Pasawat Jongpanya-Ngam, R. Khankrua, M. Seadan, S. Suttiruengwong
{"title":"合成磺酸酯衍生物作为成核剂对聚乳酸结晶行为的影响","authors":"Pasawat Jongpanya-Ngam, R. Khankrua, M. Seadan, S. Suttiruengwong","doi":"10.1080/15685551.2022.2072697","DOIUrl":null,"url":null,"abstract":"ABSTRACT The improvement of the crystallization of poly(lactic acid) (PLA) is one of the key areas to allow PLA to perform better at higher temperature and load bearing. Due to its slow crystallization rate, either organic or inorganic nucleating agents (NAs) can be used to improve the crystallization rate of PLA. In the case of organic NAs, aromatic sulfonate salt and bisamide compounds are promising ones because they can control better clarity. The aim of this work was to study the crystallization behavior of PLA using as-synthesized dimethyl 5-sulfoisophthalate sodium salt (SSIPA) as a nucleating agent in comparison with the commercial sulfonate salt (LAK-301). Two grades of PLA (PLA L105 and PLA 3251D) were used in this study. PLA samples were prepared by internal mixer and compression molding. All samples were investigated by DSC and POM. The results from DSC showed that after introducing the nucleating agents into PLA, the crystallinity in all samples was improved. The highest crystallinity at 57.48% was obtained from PLA L105/SSIPA1.0. Isothermal crystallization kinetics showed the improvement in overall crystallization rate of PLA with nucleating agents. The lowest half time crystallization obtained was 1.19 min for PLA L105/SSIPA1.0 at 135 °C. The results from POM indicated the substantial increase of the nucleus density and smaller spherulite size upon adding nucleating agents.","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of synthesized sulfonate derivatives as nucleating agents on crystallization behavior of poly(lactic acid)\",\"authors\":\"Pasawat Jongpanya-Ngam, R. Khankrua, M. Seadan, S. Suttiruengwong\",\"doi\":\"10.1080/15685551.2022.2072697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The improvement of the crystallization of poly(lactic acid) (PLA) is one of the key areas to allow PLA to perform better at higher temperature and load bearing. Due to its slow crystallization rate, either organic or inorganic nucleating agents (NAs) can be used to improve the crystallization rate of PLA. In the case of organic NAs, aromatic sulfonate salt and bisamide compounds are promising ones because they can control better clarity. The aim of this work was to study the crystallization behavior of PLA using as-synthesized dimethyl 5-sulfoisophthalate sodium salt (SSIPA) as a nucleating agent in comparison with the commercial sulfonate salt (LAK-301). Two grades of PLA (PLA L105 and PLA 3251D) were used in this study. PLA samples were prepared by internal mixer and compression molding. All samples were investigated by DSC and POM. The results from DSC showed that after introducing the nucleating agents into PLA, the crystallinity in all samples was improved. The highest crystallinity at 57.48% was obtained from PLA L105/SSIPA1.0. Isothermal crystallization kinetics showed the improvement in overall crystallization rate of PLA with nucleating agents. The lowest half time crystallization obtained was 1.19 min for PLA L105/SSIPA1.0 at 135 °C. The results from POM indicated the substantial increase of the nucleus density and smaller spherulite size upon adding nucleating agents.\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2022.2072697\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2022.2072697","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of synthesized sulfonate derivatives as nucleating agents on crystallization behavior of poly(lactic acid)
ABSTRACT The improvement of the crystallization of poly(lactic acid) (PLA) is one of the key areas to allow PLA to perform better at higher temperature and load bearing. Due to its slow crystallization rate, either organic or inorganic nucleating agents (NAs) can be used to improve the crystallization rate of PLA. In the case of organic NAs, aromatic sulfonate salt and bisamide compounds are promising ones because they can control better clarity. The aim of this work was to study the crystallization behavior of PLA using as-synthesized dimethyl 5-sulfoisophthalate sodium salt (SSIPA) as a nucleating agent in comparison with the commercial sulfonate salt (LAK-301). Two grades of PLA (PLA L105 and PLA 3251D) were used in this study. PLA samples were prepared by internal mixer and compression molding. All samples were investigated by DSC and POM. The results from DSC showed that after introducing the nucleating agents into PLA, the crystallinity in all samples was improved. The highest crystallinity at 57.48% was obtained from PLA L105/SSIPA1.0. Isothermal crystallization kinetics showed the improvement in overall crystallization rate of PLA with nucleating agents. The lowest half time crystallization obtained was 1.19 min for PLA L105/SSIPA1.0 at 135 °C. The results from POM indicated the substantial increase of the nucleus density and smaller spherulite size upon adding nucleating agents.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications