不同反刍动物睾丸组织异种移植的潜力和挑战

A. Honaramooz
{"title":"不同反刍动物睾丸组织异种移植的潜力和挑战","authors":"A. Honaramooz","doi":"10.1530/BIOSCIPROCS.8.019","DOIUrl":null,"url":null,"abstract":"In 2002, we reported that small fragments of testis tissue from immature mouse, pig or goat donors grafted in recipient mice undergo development, maturation and complete spermatogenesis, including the generation of fertilisation-competent murine, porcine or caprine sperm. Testis tissue xenografting (TTX) was then successfully applied using a range of donor species including laboratory/domestic/non-domestic animals and primates. This system offers a novel in vivo model for the study of testis function, and a previously unavailable opportunity to produce sperm in the grafts from immature donors of diverse species. The TTX model also provides easier access for experimental manipulation of the grafted testis tissue or its environment in the recipient mouse; something that is not feasible in many donor species. This application will allow analysis of, for instance, the effects of new hormone regimens, drugs or toxicants on testis function, without experimentation in the target species. Grafting of fresh or preserved testis tissue also can be used as an invaluable tool for the conservation of fertility from immature individuals of valuable or endangered animals. Reviewed here are an overview of the contributions by the author and colleagues and a critical examination of the salient literature on TTX especially using ruminant donors, as well as examples of its variety of current and potential applications for research in male reproductive biology and technologies using ruminant models. The challenges facing optimisation of TTX model as well as its field/experimental uses, along with insights and suggested remedies, are also discussed.","PeriodicalId":93083,"journal":{"name":"Bioscientifica proceedings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Potential and challenges of testis tissue xenografting from diverse ruminant species\",\"authors\":\"A. Honaramooz\",\"doi\":\"10.1530/BIOSCIPROCS.8.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2002, we reported that small fragments of testis tissue from immature mouse, pig or goat donors grafted in recipient mice undergo development, maturation and complete spermatogenesis, including the generation of fertilisation-competent murine, porcine or caprine sperm. Testis tissue xenografting (TTX) was then successfully applied using a range of donor species including laboratory/domestic/non-domestic animals and primates. This system offers a novel in vivo model for the study of testis function, and a previously unavailable opportunity to produce sperm in the grafts from immature donors of diverse species. The TTX model also provides easier access for experimental manipulation of the grafted testis tissue or its environment in the recipient mouse; something that is not feasible in many donor species. This application will allow analysis of, for instance, the effects of new hormone regimens, drugs or toxicants on testis function, without experimentation in the target species. Grafting of fresh or preserved testis tissue also can be used as an invaluable tool for the conservation of fertility from immature individuals of valuable or endangered animals. Reviewed here are an overview of the contributions by the author and colleagues and a critical examination of the salient literature on TTX especially using ruminant donors, as well as examples of its variety of current and potential applications for research in male reproductive biology and technologies using ruminant models. The challenges facing optimisation of TTX model as well as its field/experimental uses, along with insights and suggested remedies, are also discussed.\",\"PeriodicalId\":93083,\"journal\":{\"name\":\"Bioscientifica proceedings\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscientifica proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1530/BIOSCIPROCS.8.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscientifica proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1530/BIOSCIPROCS.8.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

2002年,我们报道了来自未成熟小鼠、猪或山羊供体的睾丸组织的小片段移植到受体小鼠中,经过发育、成熟和完全精子发生,包括产生具有受精能力的小鼠、猪和山羊精子。随后,使用一系列供体物种,包括实验室/家养/非家养动物和灵长类动物,成功应用了睾丸组织异种移植物(TTX)。该系统为研究睾丸功能提供了一种新的体内模型,并为在不同物种的未成熟供体的移植物中产生精子提供了以前无法获得的机会。TTX模型还为受体小鼠中移植睾丸组织或其环境的实验操作提供了更容易的途径;这在许多供体物种中是不可行的。该应用将允许分析,例如,新的激素方案、药物或毒物对睾丸功能的影响,而无需在目标物种中进行实验。移植新鲜或保存的睾丸组织也可以作为保护珍贵或濒危动物未成熟个体生育能力的宝贵工具。本文综述了作者及其同事的贡献,并对TTX的重要文献进行了批判性审查,特别是使用反刍动物供体,以及其在使用反刍动物模型的雄性生殖生物学和技术研究中的各种当前和潜在应用的例子。还讨论了TTX模型优化面临的挑战及其现场/实验用途,以及见解和建议的补救措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential and challenges of testis tissue xenografting from diverse ruminant species
In 2002, we reported that small fragments of testis tissue from immature mouse, pig or goat donors grafted in recipient mice undergo development, maturation and complete spermatogenesis, including the generation of fertilisation-competent murine, porcine or caprine sperm. Testis tissue xenografting (TTX) was then successfully applied using a range of donor species including laboratory/domestic/non-domestic animals and primates. This system offers a novel in vivo model for the study of testis function, and a previously unavailable opportunity to produce sperm in the grafts from immature donors of diverse species. The TTX model also provides easier access for experimental manipulation of the grafted testis tissue or its environment in the recipient mouse; something that is not feasible in many donor species. This application will allow analysis of, for instance, the effects of new hormone regimens, drugs or toxicants on testis function, without experimentation in the target species. Grafting of fresh or preserved testis tissue also can be used as an invaluable tool for the conservation of fertility from immature individuals of valuable or endangered animals. Reviewed here are an overview of the contributions by the author and colleagues and a critical examination of the salient literature on TTX especially using ruminant donors, as well as examples of its variety of current and potential applications for research in male reproductive biology and technologies using ruminant models. The challenges facing optimisation of TTX model as well as its field/experimental uses, along with insights and suggested remedies, are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advances in the generation of transgenic pigs via embryo-derived and primordial germ cell-derived cells The Central Nervous System and The Control of Pituitary Hormone Release in The Pig Nutrition and Reproduction Investigation and Control of Reproductive Disorders in The Breeding Herd Factors Affecting Reproductive Efficiency of the Breeding Herd
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1