{"title":"基于邻域结构的二部社会网络链接预测相似性度量","authors":"Fariba Sarhangnia, Shima Mahjoobi, Samaneh Jamshidi","doi":"10.1515/comp-2022-0233","DOIUrl":null,"url":null,"abstract":"Abstract Link prediction is one of the methods of social network analysis. Bipartite networks are a type of complex network that can be used to model many natural events. In this study, a novel similarity measure for link prediction in bipartite networks is presented. Due to the fact that classical social network link prediction methods are less efficient and effective for use in bipartite network, it is necessary to use bipartite network-specific methods to solve this problem. The purpose of this study is to provide a centralized and comprehensive method based on the neighborhood structure that performs better than the existing classical methods. The proposed method consists of a combination of criteria based on the neighborhood structure. Here, the classical criteria for link prediction by modifying the bipartite network are defined. These modified criteria constitute the main component of the proposed similarity measure. In addition to low simplicity and complexity, this method has high efficiency. The simulation results show that the proposed method with a superiority of 0.5% over MetaPath, 1.32% over FriendLink, and 1.8% over Katz in the f-measure criterion shows the best performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel similarity measure of link prediction in bipartite social networks based on neighborhood structure\",\"authors\":\"Fariba Sarhangnia, Shima Mahjoobi, Samaneh Jamshidi\",\"doi\":\"10.1515/comp-2022-0233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Link prediction is one of the methods of social network analysis. Bipartite networks are a type of complex network that can be used to model many natural events. In this study, a novel similarity measure for link prediction in bipartite networks is presented. Due to the fact that classical social network link prediction methods are less efficient and effective for use in bipartite network, it is necessary to use bipartite network-specific methods to solve this problem. The purpose of this study is to provide a centralized and comprehensive method based on the neighborhood structure that performs better than the existing classical methods. The proposed method consists of a combination of criteria based on the neighborhood structure. Here, the classical criteria for link prediction by modifying the bipartite network are defined. These modified criteria constitute the main component of the proposed similarity measure. In addition to low simplicity and complexity, this method has high efficiency. The simulation results show that the proposed method with a superiority of 0.5% over MetaPath, 1.32% over FriendLink, and 1.8% over Katz in the f-measure criterion shows the best performance.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2022-0233\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0233","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel similarity measure of link prediction in bipartite social networks based on neighborhood structure
Abstract Link prediction is one of the methods of social network analysis. Bipartite networks are a type of complex network that can be used to model many natural events. In this study, a novel similarity measure for link prediction in bipartite networks is presented. Due to the fact that classical social network link prediction methods are less efficient and effective for use in bipartite network, it is necessary to use bipartite network-specific methods to solve this problem. The purpose of this study is to provide a centralized and comprehensive method based on the neighborhood structure that performs better than the existing classical methods. The proposed method consists of a combination of criteria based on the neighborhood structure. Here, the classical criteria for link prediction by modifying the bipartite network are defined. These modified criteria constitute the main component of the proposed similarity measure. In addition to low simplicity and complexity, this method has high efficiency. The simulation results show that the proposed method with a superiority of 0.5% over MetaPath, 1.32% over FriendLink, and 1.8% over Katz in the f-measure criterion shows the best performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.