{"title":"氧化还原活性苝酰亚胺支架的光燃料耗散自组装研究","authors":"Oendrila Chatterjee, Anup Pramanik, A. Koner","doi":"10.1055/a-1967-8617","DOIUrl":null,"url":null,"abstract":"Dissipative self-assembly is ubiquitous in nature and underlie many complex structures and functions in natural systems, primarily enabled by the consumption of chemical fuels. However, dissipative self-assembly fueled by light have also been parallelly developed. Photoswitchable molecules have been widely investigated as prototypical molecular systems for light driven dissipative self-assembly. Elucidation of optically fueled dissipative self-assembly by a photo-responsive yet non-photoswitchable molecule however remains elusive. This contribution thus demonstrates the first ever report of an optically fueled dissipative self-assembly arising from a redox active perylene diimide scaffold (DIPFPDI). Photo-reduction of neutral DIPFPDI in a poor solvent DMF affords its radical anion and batches of optical re-fueling leads to an increased concentration of radical anion, inducing the construction of an H-type aggregate. Nevertheless, when the influx of visible light is adjourned, the radical anions are converted to their neutral precursors and thus the self-assembled state is no longer sustained. Signature of H-type aggregation is deduced from steady-state UV-Vis, fluorescence as well as time-resolved fluorescence spectroscopy. Theoretical insights reveal that dimerization is more feasible in the charged states because of greater delocalization of the excess charge in the charged states.","PeriodicalId":93348,"journal":{"name":"Organic Materials","volume":"4 1","pages":"228 - 239"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring Optically Fueled Dissipative Self-Assembly of a Redox-Active Perylene Diimide Scaffold\",\"authors\":\"Oendrila Chatterjee, Anup Pramanik, A. Koner\",\"doi\":\"10.1055/a-1967-8617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dissipative self-assembly is ubiquitous in nature and underlie many complex structures and functions in natural systems, primarily enabled by the consumption of chemical fuels. However, dissipative self-assembly fueled by light have also been parallelly developed. Photoswitchable molecules have been widely investigated as prototypical molecular systems for light driven dissipative self-assembly. Elucidation of optically fueled dissipative self-assembly by a photo-responsive yet non-photoswitchable molecule however remains elusive. This contribution thus demonstrates the first ever report of an optically fueled dissipative self-assembly arising from a redox active perylene diimide scaffold (DIPFPDI). Photo-reduction of neutral DIPFPDI in a poor solvent DMF affords its radical anion and batches of optical re-fueling leads to an increased concentration of radical anion, inducing the construction of an H-type aggregate. Nevertheless, when the influx of visible light is adjourned, the radical anions are converted to their neutral precursors and thus the self-assembled state is no longer sustained. Signature of H-type aggregation is deduced from steady-state UV-Vis, fluorescence as well as time-resolved fluorescence spectroscopy. Theoretical insights reveal that dimerization is more feasible in the charged states because of greater delocalization of the excess charge in the charged states.\",\"PeriodicalId\":93348,\"journal\":{\"name\":\"Organic Materials\",\"volume\":\"4 1\",\"pages\":\"228 - 239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-1967-8617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-1967-8617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Optically Fueled Dissipative Self-Assembly of a Redox-Active Perylene Diimide Scaffold
Dissipative self-assembly is ubiquitous in nature and underlie many complex structures and functions in natural systems, primarily enabled by the consumption of chemical fuels. However, dissipative self-assembly fueled by light have also been parallelly developed. Photoswitchable molecules have been widely investigated as prototypical molecular systems for light driven dissipative self-assembly. Elucidation of optically fueled dissipative self-assembly by a photo-responsive yet non-photoswitchable molecule however remains elusive. This contribution thus demonstrates the first ever report of an optically fueled dissipative self-assembly arising from a redox active perylene diimide scaffold (DIPFPDI). Photo-reduction of neutral DIPFPDI in a poor solvent DMF affords its radical anion and batches of optical re-fueling leads to an increased concentration of radical anion, inducing the construction of an H-type aggregate. Nevertheless, when the influx of visible light is adjourned, the radical anions are converted to their neutral precursors and thus the self-assembled state is no longer sustained. Signature of H-type aggregation is deduced from steady-state UV-Vis, fluorescence as well as time-resolved fluorescence spectroscopy. Theoretical insights reveal that dimerization is more feasible in the charged states because of greater delocalization of the excess charge in the charged states.