{"title":"首次还原过程中水对新催化剂高温变换转化的影响","authors":"Mohamed A. Fouad M. Gaber","doi":"10.1007/s13203-018-0222-9","DOIUrl":null,"url":null,"abstract":"<p>The water–gas shift reaction plays a major ro\nle in ammonia and hydrogen plant design and operation. \nGood performance of the shift catalysts, and attainment of a close approach to equilibrium and, hence, minimization of the CO slip from the catalyst system is critical to the efficient and economic operation of the plant and ensures maximum hydrogen production from the hydrocarbon feedstock. Excessive drying out of catalyst during first reduction was studied to identify its influence on the catalyst during normal operation.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"9 1","pages":"63 - 65"},"PeriodicalIF":0.1250,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-018-0222-9","citationCount":"3","resultStr":"{\"title\":\"Water effect on the new catalyst of high temperature shift conversion during first reduction\",\"authors\":\"Mohamed A. Fouad M. Gaber\",\"doi\":\"10.1007/s13203-018-0222-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The water–gas shift reaction plays a major ro\\nle in ammonia and hydrogen plant design and operation. \\nGood performance of the shift catalysts, and attainment of a close approach to equilibrium and, hence, minimization of the CO slip from the catalyst system is critical to the efficient and economic operation of the plant and ensures maximum hydrogen production from the hydrocarbon feedstock. Excessive drying out of catalyst during first reduction was studied to identify its influence on the catalyst during normal operation.</p>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"9 1\",\"pages\":\"63 - 65\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2018-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-018-0222-9\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-018-0222-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-018-0222-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Water effect on the new catalyst of high temperature shift conversion during first reduction
The water–gas shift reaction plays a major ro
le in ammonia and hydrogen plant design and operation.
Good performance of the shift catalysts, and attainment of a close approach to equilibrium and, hence, minimization of the CO slip from the catalyst system is critical to the efficient and economic operation of the plant and ensures maximum hydrogen production from the hydrocarbon feedstock. Excessive drying out of catalyst during first reduction was studied to identify its influence on the catalyst during normal operation.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.