基于双向、编码器-解码器和混合长短期记忆模型的刀具磨损预测性能评估

Satish Kumar, Tushar Kolekar, K. Kotecha, S. Patil, A. Bongale
{"title":"基于双向、编码器-解码器和混合长短期记忆模型的刀具磨损预测性能评估","authors":"Satish Kumar, Tushar Kolekar, K. Kotecha, S. Patil, A. Bongale","doi":"10.1108/ijqrm-08-2021-0291","DOIUrl":null,"url":null,"abstract":"Purpose Excessive tool wear is responsible for damage or breakage of the tool, workpiece, or machining center. Thus, it is crucial to examine tool conditions during the machining process to improve its useful functional life and the surface quality of the final product. AI-based tool wear prediction techniques have proven to be effective in estimating the Remaining Useful Life (RUL) of the cutting tool. However, the model prediction needs improvement in terms of accuracy.Design/methodology/approachThis paper represents a methodology of fusing a feature selection technique along with state-of-the-art deep learning models. The authors have used NASA milling data sets along with vibration signals for tool wear prediction and performance analysis in 15 different fault scenarios. Multiple steps are used for the feature selection and ranking. Different Long Short-Term Memory (LSTM) approaches are used to improve the overall prediction accuracy of the model for tool wear prediction. LSTM models' performance is evaluated using R-square, Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) parameters.FindingsThe R-square accuracy of the hybrid model is consistently high and has low MAE, MAPE and RMSE values. The average R-square score values for LSTM, Bidirection, Encoder–Decoder and Hybrid LSTM are 80.43, 84.74, 94.20 and 97.85%, respectively, and corresponding average MAPE values are 23.46, 22.200, 9.5739 and 6.2124%. The hybrid model shows high accuracy as compared to the remaining LSTM models.Originality/value The low variance, Spearman Correlation Coefficient and Random Forest Regression methods are used to select the most significant feature vectors for training the miscellaneous LSTM model versions and highlight the best approach. The selected features pass to different LSTM models like Bidirectional, Encoder–Decoder and Hybrid LSTM for tool wear prediction. The Hybrid LSTM approach shows a significant improvement in tool wear prediction.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Performance evaluation for tool wear prediction based on Bi-directional, Encoder–Decoder and Hybrid Long Short-Term Memory models\",\"authors\":\"Satish Kumar, Tushar Kolekar, K. Kotecha, S. Patil, A. Bongale\",\"doi\":\"10.1108/ijqrm-08-2021-0291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Excessive tool wear is responsible for damage or breakage of the tool, workpiece, or machining center. Thus, it is crucial to examine tool conditions during the machining process to improve its useful functional life and the surface quality of the final product. AI-based tool wear prediction techniques have proven to be effective in estimating the Remaining Useful Life (RUL) of the cutting tool. However, the model prediction needs improvement in terms of accuracy.Design/methodology/approachThis paper represents a methodology of fusing a feature selection technique along with state-of-the-art deep learning models. The authors have used NASA milling data sets along with vibration signals for tool wear prediction and performance analysis in 15 different fault scenarios. Multiple steps are used for the feature selection and ranking. Different Long Short-Term Memory (LSTM) approaches are used to improve the overall prediction accuracy of the model for tool wear prediction. LSTM models' performance is evaluated using R-square, Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) parameters.FindingsThe R-square accuracy of the hybrid model is consistently high and has low MAE, MAPE and RMSE values. The average R-square score values for LSTM, Bidirection, Encoder–Decoder and Hybrid LSTM are 80.43, 84.74, 94.20 and 97.85%, respectively, and corresponding average MAPE values are 23.46, 22.200, 9.5739 and 6.2124%. The hybrid model shows high accuracy as compared to the remaining LSTM models.Originality/value The low variance, Spearman Correlation Coefficient and Random Forest Regression methods are used to select the most significant feature vectors for training the miscellaneous LSTM model versions and highlight the best approach. The selected features pass to different LSTM models like Bidirectional, Encoder–Decoder and Hybrid LSTM for tool wear prediction. The Hybrid LSTM approach shows a significant improvement in tool wear prediction.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-08-2021-0291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-08-2021-0291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 6

摘要

用途刀具过度磨损会导致刀具、工件或加工中心的损坏或断裂。因此,在加工过程中检查刀具状态对提高刀具的使用寿命和最终产品的表面质量至关重要。基于人工智能的刀具磨损预测技术已被证明在估计刀具的剩余使用寿命(RUL)方面是有效的。但是,模型预测的精度还有待提高。设计/方法/方法本文提出了一种融合特征选择技术和最先进的深度学习模型的方法。作者使用NASA铣削数据集和振动信号,在15种不同的故障情况下进行刀具磨损预测和性能分析。特征选择和排序采用了多个步骤。为了提高刀具磨损预测模型的整体预测精度,采用了不同的长短期记忆方法。LSTM模型的性能使用r平方、平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)参数进行评估。结果混合模型的r方精度始终较高,MAE、MAPE和RMSE值较低。LSTM、Bidirection、Encoder-Decoder和Hybrid LSTM的平均r方得分值分别为80.43、84.74、94.20和97.85%,对应的平均MAPE值分别为23.46、22.200、9.5739和6.2124%。与其他LSTM模型相比,混合模型具有较高的精度。采用低方差法、Spearman相关系数法和随机森林回归法,选择最显著的特征向量用于训练各种LSTM模型版本,并突出最佳方法。选择的特征传递到不同的LSTM模型,如双向、编码器-解码器和混合LSTM,用于工具磨损预测。混合LSTM方法在刀具磨损预测方面有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance evaluation for tool wear prediction based on Bi-directional, Encoder–Decoder and Hybrid Long Short-Term Memory models
Purpose Excessive tool wear is responsible for damage or breakage of the tool, workpiece, or machining center. Thus, it is crucial to examine tool conditions during the machining process to improve its useful functional life and the surface quality of the final product. AI-based tool wear prediction techniques have proven to be effective in estimating the Remaining Useful Life (RUL) of the cutting tool. However, the model prediction needs improvement in terms of accuracy.Design/methodology/approachThis paper represents a methodology of fusing a feature selection technique along with state-of-the-art deep learning models. The authors have used NASA milling data sets along with vibration signals for tool wear prediction and performance analysis in 15 different fault scenarios. Multiple steps are used for the feature selection and ranking. Different Long Short-Term Memory (LSTM) approaches are used to improve the overall prediction accuracy of the model for tool wear prediction. LSTM models' performance is evaluated using R-square, Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) parameters.FindingsThe R-square accuracy of the hybrid model is consistently high and has low MAE, MAPE and RMSE values. The average R-square score values for LSTM, Bidirection, Encoder–Decoder and Hybrid LSTM are 80.43, 84.74, 94.20 and 97.85%, respectively, and corresponding average MAPE values are 23.46, 22.200, 9.5739 and 6.2124%. The hybrid model shows high accuracy as compared to the remaining LSTM models.Originality/value The low variance, Spearman Correlation Coefficient and Random Forest Regression methods are used to select the most significant feature vectors for training the miscellaneous LSTM model versions and highlight the best approach. The selected features pass to different LSTM models like Bidirectional, Encoder–Decoder and Hybrid LSTM for tool wear prediction. The Hybrid LSTM approach shows a significant improvement in tool wear prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
12.00%
发文量
53
期刊介绍: In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining
期刊最新文献
Appraise the role of novelty-seeking on consumers’ satisfaction using online food delivery applications The influence of library service quality, library image, place, personal control and trust on loyalty: the mediating role of perceived service value and satisfaction The impact of quality on health-insurance users' satisfaction in Saudi Arabia: the mediating role of brand image and utilitarian value Proposal of a facilitating methodology for fuzzy FMEA implementation with application in process risk analysis in the aeronautical sector Critical failure factors for Quality 4.0: an exploratory qualitative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1