{"title":"大型汽轮机壳体基于模型的实验热弹性分析","authors":"D. Emonts, M. Sanders, B. Montavon, R. Schmitt","doi":"10.36897/jme/146435","DOIUrl":null,"url":null,"abstract":"Temporally and spatially unstable thermal conditions lead to inhomogeneous thermoelastic changes in the workpiece geometry. Consequently, non-negligible geometric deviations are evident, especially when measuring large workpieces with narrow tolerances, which often take place in non-climatized production environments and thus make thermal monitoring indispensable. Accurate determination of the thermoelastic behaviour for complex and large geometries is a challenging task with computationally effortful or less accurate existing solutions. Thus, the development of innovative measurement and modelling approaches is subject of current research, whereat physical validation is a prerequisite. Therefore, the authors developed a method, enabling the emulation of typical process heat cycles on a turbine housing in combination with a geometric measurement system. The idea is to provide reproducible and reversible thermal conditions on a representative large workpiece and to investigate the resulting geometric deformation in an economically viable way. Throughout this study, an analogy test rig is presented, integrating different temperature sensors, two geometric measurement systems and thermal deformation models into one demonstrator. The demonstrator's first applications show insightful results, revealing accordance, but also unexpected deviations between the predicted and measured quantities. Moreover, it provides great potential for validation of more complex modelling approaches and innovative thermal condition monitoring systems for large precision workpieces.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model-Based, Experimental Thermoelastic Analysis of a Large Scale Turbine Housing\",\"authors\":\"D. Emonts, M. Sanders, B. Montavon, R. Schmitt\",\"doi\":\"10.36897/jme/146435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporally and spatially unstable thermal conditions lead to inhomogeneous thermoelastic changes in the workpiece geometry. Consequently, non-negligible geometric deviations are evident, especially when measuring large workpieces with narrow tolerances, which often take place in non-climatized production environments and thus make thermal monitoring indispensable. Accurate determination of the thermoelastic behaviour for complex and large geometries is a challenging task with computationally effortful or less accurate existing solutions. Thus, the development of innovative measurement and modelling approaches is subject of current research, whereat physical validation is a prerequisite. Therefore, the authors developed a method, enabling the emulation of typical process heat cycles on a turbine housing in combination with a geometric measurement system. The idea is to provide reproducible and reversible thermal conditions on a representative large workpiece and to investigate the resulting geometric deformation in an economically viable way. Throughout this study, an analogy test rig is presented, integrating different temperature sensors, two geometric measurement systems and thermal deformation models into one demonstrator. The demonstrator's first applications show insightful results, revealing accordance, but also unexpected deviations between the predicted and measured quantities. Moreover, it provides great potential for validation of more complex modelling approaches and innovative thermal condition monitoring systems for large precision workpieces.\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/146435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/146435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Model-Based, Experimental Thermoelastic Analysis of a Large Scale Turbine Housing
Temporally and spatially unstable thermal conditions lead to inhomogeneous thermoelastic changes in the workpiece geometry. Consequently, non-negligible geometric deviations are evident, especially when measuring large workpieces with narrow tolerances, which often take place in non-climatized production environments and thus make thermal monitoring indispensable. Accurate determination of the thermoelastic behaviour for complex and large geometries is a challenging task with computationally effortful or less accurate existing solutions. Thus, the development of innovative measurement and modelling approaches is subject of current research, whereat physical validation is a prerequisite. Therefore, the authors developed a method, enabling the emulation of typical process heat cycles on a turbine housing in combination with a geometric measurement system. The idea is to provide reproducible and reversible thermal conditions on a representative large workpiece and to investigate the resulting geometric deformation in an economically viable way. Throughout this study, an analogy test rig is presented, integrating different temperature sensors, two geometric measurement systems and thermal deformation models into one demonstrator. The demonstrator's first applications show insightful results, revealing accordance, but also unexpected deviations between the predicted and measured quantities. Moreover, it provides great potential for validation of more complex modelling approaches and innovative thermal condition monitoring systems for large precision workpieces.
期刊介绍:
ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.