Theodore D. Drivas, Gerard Misiołek, Bin Shi, Tsuyoshi Yoneda
{"title":"理想流体运动中的共轭点和切点","authors":"Theodore D. Drivas, Gerard Misiołek, Bin Shi, Tsuyoshi Yoneda","doi":"10.1007/s40316-021-00176-4","DOIUrl":null,"url":null,"abstract":"<div><p>Two fluid configurations along a flow are conjugate if there is a one parameter family of geodesics (fluid flows) joining them to infinitesimal order. Geometrically, they can be seen as a consequence of the (infinite dimensional) group of volume preserving diffeomorphisms having sufficiently strong positive curvatures which ‘pull’ nearby flows together. Physically, they indicate a form of (transient) stability in the configuration space of particle positions: a family of flows starting with the same configuration deviate initially and subsequently re-converge (resonate) with each other at some later moment in time. Here, we first establish existence of conjugate points in an infinite family of Kolmogorov flows—a class of stationary solutions of the Euler equations—on the rectangular flat torus of any aspect ratio. The analysis is facilitated by a general criterion for identifying conjugate points in the group of volume preserving diffeomorphisms. Next, we show non-existence of conjugate points along Arnold stable steady states on the annulus, disk and channel. Finally, we discuss cut points, their relation to non-injectivity of the exponential map (impossibility of determining a flow from a particle configuration at a given instant) and show that the closest cut point to the identity is either a conjugate point or the midpoint of a time periodic Lagrangian fluid flow.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"46 1","pages":"207 - 225"},"PeriodicalIF":0.5000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Conjugate and cut points in ideal fluid motion\",\"authors\":\"Theodore D. Drivas, Gerard Misiołek, Bin Shi, Tsuyoshi Yoneda\",\"doi\":\"10.1007/s40316-021-00176-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two fluid configurations along a flow are conjugate if there is a one parameter family of geodesics (fluid flows) joining them to infinitesimal order. Geometrically, they can be seen as a consequence of the (infinite dimensional) group of volume preserving diffeomorphisms having sufficiently strong positive curvatures which ‘pull’ nearby flows together. Physically, they indicate a form of (transient) stability in the configuration space of particle positions: a family of flows starting with the same configuration deviate initially and subsequently re-converge (resonate) with each other at some later moment in time. Here, we first establish existence of conjugate points in an infinite family of Kolmogorov flows—a class of stationary solutions of the Euler equations—on the rectangular flat torus of any aspect ratio. The analysis is facilitated by a general criterion for identifying conjugate points in the group of volume preserving diffeomorphisms. Next, we show non-existence of conjugate points along Arnold stable steady states on the annulus, disk and channel. Finally, we discuss cut points, their relation to non-injectivity of the exponential map (impossibility of determining a flow from a particle configuration at a given instant) and show that the closest cut point to the identity is either a conjugate point or the midpoint of a time periodic Lagrangian fluid flow.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"46 1\",\"pages\":\"207 - 225\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-021-00176-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-021-00176-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Two fluid configurations along a flow are conjugate if there is a one parameter family of geodesics (fluid flows) joining them to infinitesimal order. Geometrically, they can be seen as a consequence of the (infinite dimensional) group of volume preserving diffeomorphisms having sufficiently strong positive curvatures which ‘pull’ nearby flows together. Physically, they indicate a form of (transient) stability in the configuration space of particle positions: a family of flows starting with the same configuration deviate initially and subsequently re-converge (resonate) with each other at some later moment in time. Here, we first establish existence of conjugate points in an infinite family of Kolmogorov flows—a class of stationary solutions of the Euler equations—on the rectangular flat torus of any aspect ratio. The analysis is facilitated by a general criterion for identifying conjugate points in the group of volume preserving diffeomorphisms. Next, we show non-existence of conjugate points along Arnold stable steady states on the annulus, disk and channel. Finally, we discuss cut points, their relation to non-injectivity of the exponential map (impossibility of determining a flow from a particle configuration at a given instant) and show that the closest cut point to the identity is either a conjugate point or the midpoint of a time periodic Lagrangian fluid flow.
期刊介绍:
The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science.
Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages.
History:
The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique.
On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues.
Histoire:
La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.