Lévy矩阵的特征向量统计

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY Annals of Probability Pub Date : 2021-05-01 DOI:10.1214/20-AOP1493
A. Aggarwal, P. Lopatto, Jake Marcinek
{"title":"Lévy矩阵的特征向量统计","authors":"A. Aggarwal, P. Lopatto, Jake Marcinek","doi":"10.1214/20-AOP1493","DOIUrl":null,"url":null,"abstract":"We analyze statistics for eigenvector entries of heavy-tailed random symmetric matrices (also called Levy matrices) whose associated eigenvalues are sufficiently small. We show that the limiting law of any such entry is non-Gaussian, given by the product of a normal distribution with another random variable that depends on the location of the corresponding eigenvalue. Although the latter random variable is typically nonexplicit, for the median eigenvector it is given by the inverse of a one-sided stable law. Moreover, we show that different entries of the same eigenvector are asymptotically independent, but that there are nontrivial correlations between eigenvectors with nearby eigenvalues. Our findings contrast sharply with the known eigenvector behavior for Wigner matrices and sparse random graphs.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Eigenvector statistics of Lévy matrices\",\"authors\":\"A. Aggarwal, P. Lopatto, Jake Marcinek\",\"doi\":\"10.1214/20-AOP1493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze statistics for eigenvector entries of heavy-tailed random symmetric matrices (also called Levy matrices) whose associated eigenvalues are sufficiently small. We show that the limiting law of any such entry is non-Gaussian, given by the product of a normal distribution with another random variable that depends on the location of the corresponding eigenvalue. Although the latter random variable is typically nonexplicit, for the median eigenvector it is given by the inverse of a one-sided stable law. Moreover, we show that different entries of the same eigenvector are asymptotically independent, but that there are nontrivial correlations between eigenvectors with nearby eigenvalues. Our findings contrast sharply with the known eigenvector behavior for Wigner matrices and sparse random graphs.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-AOP1493\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-AOP1493","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 15

摘要

我们分析了重尾随机对称矩阵(也称为Levy矩阵)的特征向量项的统计信息,这些矩阵的相关特征值足够小。我们证明了任何此类项的极限律都是非高斯的,由正态分布与另一个随机变量的乘积给出,该随机变量取决于相应特征值的位置。尽管后一个随机变量通常是非重复的,但对于中值特征向量,它是由单侧稳定律的逆给出的。此外,我们还证明了同一特征向量的不同项是渐近独立的,但特征向量与附近特征向量之间存在非平凡的相关性。我们的发现与Wigner矩阵和稀疏随机图的已知特征向量行为形成了鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eigenvector statistics of Lévy matrices
We analyze statistics for eigenvector entries of heavy-tailed random symmetric matrices (also called Levy matrices) whose associated eigenvalues are sufficiently small. We show that the limiting law of any such entry is non-Gaussian, given by the product of a normal distribution with another random variable that depends on the location of the corresponding eigenvalue. Although the latter random variable is typically nonexplicit, for the median eigenvector it is given by the inverse of a one-sided stable law. Moreover, we show that different entries of the same eigenvector are asymptotically independent, but that there are nontrivial correlations between eigenvectors with nearby eigenvalues. Our findings contrast sharply with the known eigenvector behavior for Wigner matrices and sparse random graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
期刊最新文献
Most transient random walks have infinitely many cut times Scaling limit of the heavy tailed ballistic deposition model with p-sticking Decay of convolved densities via Laplace transform On strong solutions of Itô’s equations with Dσ and b in Morrey classes containing Ld Global information from local observations of the noisy voter model on a graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1