使用规则- k - means的物品投递聚类

M. R. Yudhanegara, S. Indratno, R. N. Sari
{"title":"使用规则- k - means的物品投递聚类","authors":"M. R. Yudhanegara, S. Indratno, R. N. Sari","doi":"10.22342/JIMS.26.2.871.185-191","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an alternative approach as model for cluster analysis. The data were analyzed by rule-k-means algorithm. It's combine between k-means algorithm and rules. As an application, we use the simulate of item delivery data to classify items based on destination addresses. The goal is to map the item based on type of delivery vehicle. The clustering can be used as a recommendation to the item delivery service company.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Clustering for Item Delivery Using Rule-K-Means\",\"authors\":\"M. R. Yudhanegara, S. Indratno, R. N. Sari\",\"doi\":\"10.22342/JIMS.26.2.871.185-191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an alternative approach as model for cluster analysis. The data were analyzed by rule-k-means algorithm. It's combine between k-means algorithm and rules. As an application, we use the simulate of item delivery data to classify items based on destination addresses. The goal is to map the item based on type of delivery vehicle. The clustering can be used as a recommendation to the item delivery service company.\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/JIMS.26.2.871.185-191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/JIMS.26.2.871.185-191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们介绍了一种替代方法作为聚类分析的模型。数据采用规则k均值算法进行分析。它是k均值算法和规则的结合。作为一个应用程序,我们使用物品交付数据的模拟来根据目的地地址对物品进行分类。目标是根据交付车辆的类型映射项目。聚类可以用作对物品递送服务公司的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering for Item Delivery Using Rule-K-Means
In this paper, we introduce an alternative approach as model for cluster analysis. The data were analyzed by rule-k-means algorithm. It's combine between k-means algorithm and rules. As an application, we use the simulate of item delivery data to classify items based on destination addresses. The goal is to map the item based on type of delivery vehicle. The clustering can be used as a recommendation to the item delivery service company.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
期刊最新文献
Nonsplit Graphs with Split Maximal Induced Subgraphs On A Group Involving The Automorphism of The Janko Group J2 Modified Multiple Decrement Table and Its Credibility Based on Factor Characteristics On Conditions for Controllability and Local Regularity of A System of Differential Equations fq-Derivation of BP-Algebras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1