捕食者和猎物相遇的地方:淡水河口鱼类之间的人为接触点

Q3 Agricultural and Biological Sciences San Francisco Estuary and Watershed Science Pub Date : 2019-12-08 DOI:10.15447/sfews.2019v17iss4art3
Brendan Lehman, Meagan Gary, Nicholas J. Demetras, C. Michel
{"title":"捕食者和猎物相遇的地方:淡水河口鱼类之间的人为接触点","authors":"Brendan Lehman, Meagan Gary, Nicholas J. Demetras, C. Michel","doi":"10.15447/sfews.2019v17iss4art3","DOIUrl":null,"url":null,"abstract":"The Sacramento–San Joaquin Delta has been invaded by several species of non-native predatory fish that are presumed to be impeding native fish population recovery efforts. Since eradication of predators is unlikely, there is substantial interest in removing or altering manmade structures in the Delta that may exacerbate predation on native fish (contact points). It is presumed that these physical structures influence predator-prey dynamics, but how habitat features influence species interactions is poorly understood, and physical structures in the Delta that could be remediated to benefit native fish have not been inventoried completely. To inform future research efforts, we reviewed literature that focused on determining the effects of predator-prey interactions between fish, based on contact points that are commonly found in the Delta. We also performed a geospatial analysis to determine the extent of potential contact points in the Delta. We found that the effects of submerged aquatic vegetation (SAV) and artificial illumination are well studied and documented to influence predation in other freshwater systems worldwide. Conversely, other common structures in the Delta—such as docks, pilings, woody debris, revetment, and water diversions—did not have the same breadth of research. In the Delta, the spatial extent of the different types of contact points differed considerably. For example, 22% of the Delta water surface area is occupied by SAV, whereas docks only cover 0.44%. Our conclusion, based on both the literature review and spatial analysis, is that the effects of SAV and artificial illumination on predation warrant the most immediate future investigation in the Delta.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15447/sfews.2019v17iss4art3","citationCount":"7","resultStr":"{\"title\":\"Where Predators and Prey Meet: Anthropogenic Contact Points Between Fishes in a Freshwater Estuary\",\"authors\":\"Brendan Lehman, Meagan Gary, Nicholas J. Demetras, C. Michel\",\"doi\":\"10.15447/sfews.2019v17iss4art3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sacramento–San Joaquin Delta has been invaded by several species of non-native predatory fish that are presumed to be impeding native fish population recovery efforts. Since eradication of predators is unlikely, there is substantial interest in removing or altering manmade structures in the Delta that may exacerbate predation on native fish (contact points). It is presumed that these physical structures influence predator-prey dynamics, but how habitat features influence species interactions is poorly understood, and physical structures in the Delta that could be remediated to benefit native fish have not been inventoried completely. To inform future research efforts, we reviewed literature that focused on determining the effects of predator-prey interactions between fish, based on contact points that are commonly found in the Delta. We also performed a geospatial analysis to determine the extent of potential contact points in the Delta. We found that the effects of submerged aquatic vegetation (SAV) and artificial illumination are well studied and documented to influence predation in other freshwater systems worldwide. Conversely, other common structures in the Delta—such as docks, pilings, woody debris, revetment, and water diversions—did not have the same breadth of research. In the Delta, the spatial extent of the different types of contact points differed considerably. For example, 22% of the Delta water surface area is occupied by SAV, whereas docks only cover 0.44%. Our conclusion, based on both the literature review and spatial analysis, is that the effects of SAV and artificial illumination on predation warrant the most immediate future investigation in the Delta.\",\"PeriodicalId\":38364,\"journal\":{\"name\":\"San Francisco Estuary and Watershed Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15447/sfews.2019v17iss4art3\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"San Francisco Estuary and Watershed Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15447/sfews.2019v17iss4art3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"San Francisco Estuary and Watershed Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15447/sfews.2019v17iss4art3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 7

摘要

萨克拉门托-圣华金三角洲已经被几种非本土掠食性鱼类入侵,这些鱼类被认为阻碍了当地鱼类种群的恢复工作。由于不太可能根除捕食者,人们对拆除或改变三角洲的人造结构非常感兴趣,因为这可能会加剧对本地鱼类(接触点)的捕食。据推测,这些物理结构会影响捕食者-猎物的动态,但人们对栖息地特征如何影响物种相互作用知之甚少,三角洲的物理结构可以补救以造福本地鱼类,但尚未完全清点。为了为未来的研究工作提供信息,我们回顾了一些文献,这些文献侧重于根据三角洲常见的接触点来确定鱼类之间捕食者-猎物相互作用的影响。我们还进行了地理空间分析,以确定三角洲潜在接触点的范围。我们发现,水下水生植被(SAV)和人工照明的影响已经得到了充分的研究和证明,可以影响世界其他淡水系统的捕食。相反,三角洲的其他常见结构——如码头、木桩、木质碎片、护岸和引水——没有同样广泛的研究。在三角洲,不同类型接触点的空间范围差异很大。例如,22%的三角洲水面面积被SAV占据,而码头仅占0.44%。基于文献综述和空间分析,我们的结论是,SAV和人工照明对捕食的影响值得在三角洲进行最直接的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Where Predators and Prey Meet: Anthropogenic Contact Points Between Fishes in a Freshwater Estuary
The Sacramento–San Joaquin Delta has been invaded by several species of non-native predatory fish that are presumed to be impeding native fish population recovery efforts. Since eradication of predators is unlikely, there is substantial interest in removing or altering manmade structures in the Delta that may exacerbate predation on native fish (contact points). It is presumed that these physical structures influence predator-prey dynamics, but how habitat features influence species interactions is poorly understood, and physical structures in the Delta that could be remediated to benefit native fish have not been inventoried completely. To inform future research efforts, we reviewed literature that focused on determining the effects of predator-prey interactions between fish, based on contact points that are commonly found in the Delta. We also performed a geospatial analysis to determine the extent of potential contact points in the Delta. We found that the effects of submerged aquatic vegetation (SAV) and artificial illumination are well studied and documented to influence predation in other freshwater systems worldwide. Conversely, other common structures in the Delta—such as docks, pilings, woody debris, revetment, and water diversions—did not have the same breadth of research. In the Delta, the spatial extent of the different types of contact points differed considerably. For example, 22% of the Delta water surface area is occupied by SAV, whereas docks only cover 0.44%. Our conclusion, based on both the literature review and spatial analysis, is that the effects of SAV and artificial illumination on predation warrant the most immediate future investigation in the Delta.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
San Francisco Estuary and Watershed Science
San Francisco Estuary and Watershed Science Environmental Science-Water Science and Technology
CiteScore
2.90
自引率
0.00%
发文量
24
审稿时长
24 weeks
期刊最新文献
Regional Diversity Trends of Nearshore Fish Assemblages of the Upper San Francisco Estuary Sub-Lethal Responses of Delta Smelt to Contaminants Under Different Flow Conditions Spatial Patterns of Water Supply and Use in California Managed Wetlands for Climate Action: Potential Greenhouse Gas and Subsidence Mitigation in the Sacramento–San Joaquin Delta Proofing Field and Laboratory Species Identification Procedures Developed for the Non-Native Osmerid Species Wakasagi (Hypomesus nipponensis) Using SHERLOCK-Based Genetic Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1