{"title":"轨道垂直不规则度综合方法的实验验证","authors":"M. Dumitriu, I. Răcănel","doi":"10.2478/rjti-2018-0011","DOIUrl":null,"url":null,"abstract":"Abstract The paper focuses on the experimental verification of the results derived from numerical simulations, based on a model of the bogie-track system, where the vertical track irregularities are introduced in the form of a pseudorandom function. This function comes from an original method of synthesizing the vertical track irregularities, depending on the geometric quality of the track and on the velocity. To verify the method, the root mean square (RMS) of the simulated accelerations in the axles and the bogie frame against each axle is compared to the experimental accelerations within the frequency range of wavelengths of the track vertical irregularities from 3 to 120 m. The results have shown a good correlation between the simulated RMS accelerations for a low quality track and the measured RMS accelerations.","PeriodicalId":40630,"journal":{"name":"Romanian Journal of Transport Infrastructure","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental Verification of Method to Synthesize the Track Vertical Irregularities\",\"authors\":\"M. Dumitriu, I. Răcănel\",\"doi\":\"10.2478/rjti-2018-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper focuses on the experimental verification of the results derived from numerical simulations, based on a model of the bogie-track system, where the vertical track irregularities are introduced in the form of a pseudorandom function. This function comes from an original method of synthesizing the vertical track irregularities, depending on the geometric quality of the track and on the velocity. To verify the method, the root mean square (RMS) of the simulated accelerations in the axles and the bogie frame against each axle is compared to the experimental accelerations within the frequency range of wavelengths of the track vertical irregularities from 3 to 120 m. The results have shown a good correlation between the simulated RMS accelerations for a low quality track and the measured RMS accelerations.\",\"PeriodicalId\":40630,\"journal\":{\"name\":\"Romanian Journal of Transport Infrastructure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Romanian Journal of Transport Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rjti-2018-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Journal of Transport Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rjti-2018-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental Verification of Method to Synthesize the Track Vertical Irregularities
Abstract The paper focuses on the experimental verification of the results derived from numerical simulations, based on a model of the bogie-track system, where the vertical track irregularities are introduced in the form of a pseudorandom function. This function comes from an original method of synthesizing the vertical track irregularities, depending on the geometric quality of the track and on the velocity. To verify the method, the root mean square (RMS) of the simulated accelerations in the axles and the bogie frame against each axle is compared to the experimental accelerations within the frequency range of wavelengths of the track vertical irregularities from 3 to 120 m. The results have shown a good correlation between the simulated RMS accelerations for a low quality track and the measured RMS accelerations.