M. Salas-Moreno, M. Castillejo, C. López-Hidalgo, J. Marrugo-Negrete, E. Rodríguez-Cavallo, D. Méndez-Cuadro, J. Jorrín-Novo
{"title":"LC-MS/MS霰弹枪蛋白质组学揭示雀稗耐铅胁迫的生化机制","authors":"M. Salas-Moreno, M. Castillejo, C. López-Hidalgo, J. Marrugo-Negrete, E. Rodríguez-Cavallo, D. Méndez-Cuadro, J. Jorrín-Novo","doi":"10.32615/bp.2022.016","DOIUrl":null,"url":null,"abstract":"Paspalum fasciculatum Willd. ex Flüggé grows in mining soils which are Cd- and Pb-contaminated where it exhibits tolerance to Pb and the ability to extract Pb from these soils. To elucidate tolerance mechanisms to Pb-stress, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to quantify changes in the accumulation of proteins in leaves. We identified 323 proteins involved in primary metabolism and response to biotic or abiotic stresses. Although proteins involved in the processes of photosynthesis and saccharide and energy metabolism presented the greatest amount of down-regulated proteins, the plant was able to maintain photosynthetic functions and obtain energy to sustain the vital balance. P. fasciculatum based their tolerance on increased antioxidant defenses, improving the protection and repair of proteins and transduction signals to coordinate physiological response to Pb-stress. Our results provide important information to understand the tolerance mechanisms in P. fasciculatum and could be important in future molecular studies on the resistance and accumulation of Pb in plants.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LC-MS/MS shotgun proteomics reveals biochemical mechanisms of Paspalum fasciculatum tolerance to Pb-stress\",\"authors\":\"M. Salas-Moreno, M. Castillejo, C. López-Hidalgo, J. Marrugo-Negrete, E. Rodríguez-Cavallo, D. Méndez-Cuadro, J. Jorrín-Novo\",\"doi\":\"10.32615/bp.2022.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paspalum fasciculatum Willd. ex Flüggé grows in mining soils which are Cd- and Pb-contaminated where it exhibits tolerance to Pb and the ability to extract Pb from these soils. To elucidate tolerance mechanisms to Pb-stress, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to quantify changes in the accumulation of proteins in leaves. We identified 323 proteins involved in primary metabolism and response to biotic or abiotic stresses. Although proteins involved in the processes of photosynthesis and saccharide and energy metabolism presented the greatest amount of down-regulated proteins, the plant was able to maintain photosynthetic functions and obtain energy to sustain the vital balance. P. fasciculatum based their tolerance on increased antioxidant defenses, improving the protection and repair of proteins and transduction signals to coordinate physiological response to Pb-stress. Our results provide important information to understand the tolerance mechanisms in P. fasciculatum and could be important in future molecular studies on the resistance and accumulation of Pb in plants.\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/bp.2022.016\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/bp.2022.016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
LC-MS/MS shotgun proteomics reveals biochemical mechanisms of Paspalum fasciculatum tolerance to Pb-stress
Paspalum fasciculatum Willd. ex Flüggé grows in mining soils which are Cd- and Pb-contaminated where it exhibits tolerance to Pb and the ability to extract Pb from these soils. To elucidate tolerance mechanisms to Pb-stress, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to quantify changes in the accumulation of proteins in leaves. We identified 323 proteins involved in primary metabolism and response to biotic or abiotic stresses. Although proteins involved in the processes of photosynthesis and saccharide and energy metabolism presented the greatest amount of down-regulated proteins, the plant was able to maintain photosynthetic functions and obtain energy to sustain the vital balance. P. fasciculatum based their tolerance on increased antioxidant defenses, improving the protection and repair of proteins and transduction signals to coordinate physiological response to Pb-stress. Our results provide important information to understand the tolerance mechanisms in P. fasciculatum and could be important in future molecular studies on the resistance and accumulation of Pb in plants.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.