{"title":"多渔业管理目标下最优收获控制规则的综合函数形式","authors":"Tatsunori Yagi, T. Yamakawa","doi":"10.1139/cjfas-2022-0195","DOIUrl":null,"url":null,"abstract":"For many of the world's fisheries, harvest control rules (HCRs) are the main tools for supporting decision-making. We previously clarified the optimal shape of the HCR to achieve multiple fisheries management objectives (maximising average catch, reducing variation in yields, and avoiding stock collapse) and ensure robustness to estimation errors in biomass by numerically estimating the optimal values of the 21 biological reference points (BRPs) comprised in the HCR. However, for actual management, a simple but comprehensive functional form to emulate the optimal HCR is desirable, as numerical HCR optimisation with many BRPs is time-consuming. Here, we introduced three objective utility functions ( U1– U3) representing HCR performance for composite management objectives: mean–variance utility functions, where the performance indicator for variation in yields is the standard deviation ( U1) or the annual average variance ( U2) of yields, and the constant relative risk aversion utility function ( U3). We derived two equations to emulate the optimal HCRs with three adjusting parameters corresponding to the management objectives and different magnitudes of estimation errors. These equations will help stakeholders discuss desired management strategies by showing expected catch and risk by adjusting the parameter values.","PeriodicalId":9515,"journal":{"name":"Canadian Journal of Fisheries and Aquatic Sciences","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive functional form of the optimal harvest control rule for multiple fishery management objectives\",\"authors\":\"Tatsunori Yagi, T. Yamakawa\",\"doi\":\"10.1139/cjfas-2022-0195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many of the world's fisheries, harvest control rules (HCRs) are the main tools for supporting decision-making. We previously clarified the optimal shape of the HCR to achieve multiple fisheries management objectives (maximising average catch, reducing variation in yields, and avoiding stock collapse) and ensure robustness to estimation errors in biomass by numerically estimating the optimal values of the 21 biological reference points (BRPs) comprised in the HCR. However, for actual management, a simple but comprehensive functional form to emulate the optimal HCR is desirable, as numerical HCR optimisation with many BRPs is time-consuming. Here, we introduced three objective utility functions ( U1– U3) representing HCR performance for composite management objectives: mean–variance utility functions, where the performance indicator for variation in yields is the standard deviation ( U1) or the annual average variance ( U2) of yields, and the constant relative risk aversion utility function ( U3). We derived two equations to emulate the optimal HCRs with three adjusting parameters corresponding to the management objectives and different magnitudes of estimation errors. These equations will help stakeholders discuss desired management strategies by showing expected catch and risk by adjusting the parameter values.\",\"PeriodicalId\":9515,\"journal\":{\"name\":\"Canadian Journal of Fisheries and Aquatic Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Fisheries and Aquatic Sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjfas-2022-0195\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Fisheries and Aquatic Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfas-2022-0195","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
A comprehensive functional form of the optimal harvest control rule for multiple fishery management objectives
For many of the world's fisheries, harvest control rules (HCRs) are the main tools for supporting decision-making. We previously clarified the optimal shape of the HCR to achieve multiple fisheries management objectives (maximising average catch, reducing variation in yields, and avoiding stock collapse) and ensure robustness to estimation errors in biomass by numerically estimating the optimal values of the 21 biological reference points (BRPs) comprised in the HCR. However, for actual management, a simple but comprehensive functional form to emulate the optimal HCR is desirable, as numerical HCR optimisation with many BRPs is time-consuming. Here, we introduced three objective utility functions ( U1– U3) representing HCR performance for composite management objectives: mean–variance utility functions, where the performance indicator for variation in yields is the standard deviation ( U1) or the annual average variance ( U2) of yields, and the constant relative risk aversion utility function ( U3). We derived two equations to emulate the optimal HCRs with three adjusting parameters corresponding to the management objectives and different magnitudes of estimation errors. These equations will help stakeholders discuss desired management strategies by showing expected catch and risk by adjusting the parameter values.
期刊介绍:
The Canadian Journal of Fisheries and Aquatic Sciences is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on -omics, cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science.