多渔业管理目标下最优收获控制规则的综合函数形式

IF 1.9 2区 农林科学 Q2 FISHERIES Canadian Journal of Fisheries and Aquatic Sciences Pub Date : 2023-07-03 DOI:10.1139/cjfas-2022-0195
Tatsunori Yagi, T. Yamakawa
{"title":"多渔业管理目标下最优收获控制规则的综合函数形式","authors":"Tatsunori Yagi, T. Yamakawa","doi":"10.1139/cjfas-2022-0195","DOIUrl":null,"url":null,"abstract":"For many of the world's fisheries, harvest control rules (HCRs) are the main tools for supporting decision-making. We previously clarified the optimal shape of the HCR to achieve multiple fisheries management objectives (maximising average catch, reducing variation in yields, and avoiding stock collapse) and ensure robustness to estimation errors in biomass by numerically estimating the optimal values of the 21 biological reference points (BRPs) comprised in the HCR. However, for actual management, a simple but comprehensive functional form to emulate the optimal HCR is desirable, as numerical HCR optimisation with many BRPs is time-consuming. Here, we introduced three objective utility functions ( U1– U3) representing HCR performance for composite management objectives: mean–variance utility functions, where the performance indicator for variation in yields is the standard deviation ( U1) or the annual average variance ( U2) of yields, and the constant relative risk aversion utility function ( U3). We derived two equations to emulate the optimal HCRs with three adjusting parameters corresponding to the management objectives and different magnitudes of estimation errors. These equations will help stakeholders discuss desired management strategies by showing expected catch and risk by adjusting the parameter values.","PeriodicalId":9515,"journal":{"name":"Canadian Journal of Fisheries and Aquatic Sciences","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive functional form of the optimal harvest control rule for multiple fishery management objectives\",\"authors\":\"Tatsunori Yagi, T. Yamakawa\",\"doi\":\"10.1139/cjfas-2022-0195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many of the world's fisheries, harvest control rules (HCRs) are the main tools for supporting decision-making. We previously clarified the optimal shape of the HCR to achieve multiple fisheries management objectives (maximising average catch, reducing variation in yields, and avoiding stock collapse) and ensure robustness to estimation errors in biomass by numerically estimating the optimal values of the 21 biological reference points (BRPs) comprised in the HCR. However, for actual management, a simple but comprehensive functional form to emulate the optimal HCR is desirable, as numerical HCR optimisation with many BRPs is time-consuming. Here, we introduced three objective utility functions ( U1– U3) representing HCR performance for composite management objectives: mean–variance utility functions, where the performance indicator for variation in yields is the standard deviation ( U1) or the annual average variance ( U2) of yields, and the constant relative risk aversion utility function ( U3). We derived two equations to emulate the optimal HCRs with three adjusting parameters corresponding to the management objectives and different magnitudes of estimation errors. These equations will help stakeholders discuss desired management strategies by showing expected catch and risk by adjusting the parameter values.\",\"PeriodicalId\":9515,\"journal\":{\"name\":\"Canadian Journal of Fisheries and Aquatic Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Fisheries and Aquatic Sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjfas-2022-0195\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Fisheries and Aquatic Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfas-2022-0195","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

对于世界上许多渔业来说,捕捞控制规则是支持决策的主要工具。我们之前澄清了HCR的最佳形状,以实现多个渔业管理目标(最大化平均捕获量、减少产量变化和避免种群崩溃),并通过数值估计HCR中21个生物参考点(BRP)的最佳值来确保对生物量估计误差的稳健性。然而,对于实际管理,需要一种简单但全面的功能形式来模拟最优HCR,因为使用许多BRP进行数值HCR优化是耗时的。在这里,我们引入了三个代表复合管理目标HCR绩效的目标效用函数(U1–U3):均值-方差效用函数,其中收益率变化的绩效指标是收益率的标准差(U1)或年平均方差(U2),以及恒定相对风险规避效用函数(U3)。我们推导了两个方程来模拟最优HCR,其中三个调整参数对应于管理目标和不同程度的估计误差。这些方程将通过调整参数值显示预期捕获量和风险,帮助利益相关者讨论所需的管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive functional form of the optimal harvest control rule for multiple fishery management objectives
For many of the world's fisheries, harvest control rules (HCRs) are the main tools for supporting decision-making. We previously clarified the optimal shape of the HCR to achieve multiple fisheries management objectives (maximising average catch, reducing variation in yields, and avoiding stock collapse) and ensure robustness to estimation errors in biomass by numerically estimating the optimal values of the 21 biological reference points (BRPs) comprised in the HCR. However, for actual management, a simple but comprehensive functional form to emulate the optimal HCR is desirable, as numerical HCR optimisation with many BRPs is time-consuming. Here, we introduced three objective utility functions ( U1– U3) representing HCR performance for composite management objectives: mean–variance utility functions, where the performance indicator for variation in yields is the standard deviation ( U1) or the annual average variance ( U2) of yields, and the constant relative risk aversion utility function ( U3). We derived two equations to emulate the optimal HCRs with three adjusting parameters corresponding to the management objectives and different magnitudes of estimation errors. These equations will help stakeholders discuss desired management strategies by showing expected catch and risk by adjusting the parameter values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Fisheries and Aquatic Sciences
Canadian Journal of Fisheries and Aquatic Sciences 农林科学-海洋与淡水生物学
CiteScore
4.60
自引率
12.50%
发文量
148
审稿时长
6-16 weeks
期刊介绍: The Canadian Journal of Fisheries and Aquatic Sciences is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on -omics, cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science.
期刊最新文献
Variation in estuary use patterns of juvenile Chinook salmon in the Fraser River, BC Declines and shifts in morphological diversity of ciscoes (Coregonus spp.) in lakes Huron and Michigan, 1917–2019 An integrative approach to assessing bridle shiner (Notropis bifrenatus) distribution using environmental DNA and traditional techniques Small pelagic fish: new frontiers in science and sustainable management Synchrony of alewife, Alosa pseudoharengus, year-class strength in the Great Lakes region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1