{"title":"基于橙色海笔(Ptilosarcus Gurneyi)的拖曳式垂直轴风转子仿生叶片形状的进化","authors":"Umang H. Rathod, V. Kulkarni, U. Saha","doi":"10.1115/1.4055914","DOIUrl":null,"url":null,"abstract":"\n Inspired by the polyp leaf of the Orange sea-pen (Ptilosarcus gurneyi), a novel blade shape of the Savonius vertical-axis wind rotor is developed. The similarities between the aerodynamic and the hydrodynamic aspects of the Savonius rotor blade profile and the sea-pen leaf are reviewed, and an appropriate analogy is thereby established. The shape of the sea-pen leaf is then extracted to fabricate the rotor blades. The performance of this sea-pen bladed rotor is evaluated in a low-speed subsonic wind tunnel at different wind velocities. The two-dimensional (2D) numerical analysis is also performed to support the experimental findings and to study the influence of blade shape on the pressure and the torque distributions of the rotor. The novel sea-pen bladed rotor, having lesser material requirements, is seen to demonstrate higher performance than that of the conventional semicircular bladed rotor in the tested range of low tip-speed ratio.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolving a Bio-Inspired Blade Shape of the Drag-based Vertical-axis Wind Rotor Derived from Orange Sea-pen (Ptilosarcus Gurneyi)\",\"authors\":\"Umang H. Rathod, V. Kulkarni, U. Saha\",\"doi\":\"10.1115/1.4055914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Inspired by the polyp leaf of the Orange sea-pen (Ptilosarcus gurneyi), a novel blade shape of the Savonius vertical-axis wind rotor is developed. The similarities between the aerodynamic and the hydrodynamic aspects of the Savonius rotor blade profile and the sea-pen leaf are reviewed, and an appropriate analogy is thereby established. The shape of the sea-pen leaf is then extracted to fabricate the rotor blades. The performance of this sea-pen bladed rotor is evaluated in a low-speed subsonic wind tunnel at different wind velocities. The two-dimensional (2D) numerical analysis is also performed to support the experimental findings and to study the influence of blade shape on the pressure and the torque distributions of the rotor. The novel sea-pen bladed rotor, having lesser material requirements, is seen to demonstrate higher performance than that of the conventional semicircular bladed rotor in the tested range of low tip-speed ratio.\",\"PeriodicalId\":17124,\"journal\":{\"name\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055914\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055914","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Evolving a Bio-Inspired Blade Shape of the Drag-based Vertical-axis Wind Rotor Derived from Orange Sea-pen (Ptilosarcus Gurneyi)
Inspired by the polyp leaf of the Orange sea-pen (Ptilosarcus gurneyi), a novel blade shape of the Savonius vertical-axis wind rotor is developed. The similarities between the aerodynamic and the hydrodynamic aspects of the Savonius rotor blade profile and the sea-pen leaf are reviewed, and an appropriate analogy is thereby established. The shape of the sea-pen leaf is then extracted to fabricate the rotor blades. The performance of this sea-pen bladed rotor is evaluated in a low-speed subsonic wind tunnel at different wind velocities. The two-dimensional (2D) numerical analysis is also performed to support the experimental findings and to study the influence of blade shape on the pressure and the torque distributions of the rotor. The novel sea-pen bladed rotor, having lesser material requirements, is seen to demonstrate higher performance than that of the conventional semicircular bladed rotor in the tested range of low tip-speed ratio.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.