高分辨率吸收光谱的室温和喷气冷却氨之间59,000和93,000厘米-1

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Journal of Molecular Spectroscopy Pub Date : 2023-07-01 DOI:10.1016/j.jms.2023.111810
Stephen T. Pratt , Ugo Jacovella , Séverine Boyé-Péronne , Michael N.R. Ashfold , Denis Joyeux , Nelson De Oliveira , David M.P. Holland
{"title":"高分辨率吸收光谱的室温和喷气冷却氨之间59,000和93,000厘米-1","authors":"Stephen T. Pratt ,&nbsp;Ugo Jacovella ,&nbsp;Séverine Boyé-Péronne ,&nbsp;Michael N.R. Ashfold ,&nbsp;Denis Joyeux ,&nbsp;Nelson De Oliveira ,&nbsp;David M.P. Holland","doi":"10.1016/j.jms.2023.111810","DOIUrl":null,"url":null,"abstract":"<div><p>We present new high-resolution photoabsorption spectra of ammonia spanning the region between 59,000 cm<sup>−1</sup> and 93,000 cm<sup>−1</sup> that were recorded by using the Fourier Transform Spectrometer at the Synchrotron SOLEIL. This region extends from just above the Franck-Condon envelope for the <span><math><mover><mi>A</mi><mo>̃</mo></mover></math></span> <sup>1</sup><span><math><mrow><msub><mi>A</mi><mrow><mn>2</mn></mrow></msub><mo>″</mo></mrow></math></span> ← <span><math><mover><mi>X</mi><mo>̃</mo></mover></math></span> <sup>1</sup><span><math><mrow><msub><mi>A</mi><mrow><mn>1</mn></mrow></msub><mo>′</mo></mrow></math></span> transition to well above the NH<sub>3</sub><sup>+</sup> <span><math><msup><mrow><mover><mi>X</mi><mo>̃</mo></mover></mrow><mo>+</mo></msup></math></span> <sup>2</sup><span><math><mrow><msub><mi>A</mi><mrow><mn>2</mn></mrow></msub><mo>″</mo></mrow></math></span> ionization threshold. The spectra were recorded at a measured resolution of 0.23 cm<sup>−1</sup> in both a room-temperature cell (293 K) and in a slit-jet supersonic expansion (∼70 K). The absolute photoabsorption cross section with an uncertainty of ± 5% is also reported for the room-temperature spectrum. The present resolution is a factor of 10 – 100 times higher than in other recently reported broad band spectra of ammonia, and many of the observed bands show partially resolved rotational structure. We have attempted to assign this structure for a number of these bands. The oscillator strengths extracted from the data are in good agreement with previous measurements but, in the case of structured bands, the present higher resolution measurements return higher peak absorption cross sections, that increase further when the sample is cooled. The present higher resolution spectra suggest that a number of previous vibronic band assignments that were based on quantum defect considerations may require some revision. Finally, we discuss the substantial differences between the photoabsorption and photoionization data just above the first ionization threshold.</p></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"396 ","pages":"Article 111810"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution absorption spectroscopy of room-temperature and jet-cooled ammonia between 59,000 and 93,000 cm−1\",\"authors\":\"Stephen T. Pratt ,&nbsp;Ugo Jacovella ,&nbsp;Séverine Boyé-Péronne ,&nbsp;Michael N.R. Ashfold ,&nbsp;Denis Joyeux ,&nbsp;Nelson De Oliveira ,&nbsp;David M.P. Holland\",\"doi\":\"10.1016/j.jms.2023.111810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present new high-resolution photoabsorption spectra of ammonia spanning the region between 59,000 cm<sup>−1</sup> and 93,000 cm<sup>−1</sup> that were recorded by using the Fourier Transform Spectrometer at the Synchrotron SOLEIL. This region extends from just above the Franck-Condon envelope for the <span><math><mover><mi>A</mi><mo>̃</mo></mover></math></span> <sup>1</sup><span><math><mrow><msub><mi>A</mi><mrow><mn>2</mn></mrow></msub><mo>″</mo></mrow></math></span> ← <span><math><mover><mi>X</mi><mo>̃</mo></mover></math></span> <sup>1</sup><span><math><mrow><msub><mi>A</mi><mrow><mn>1</mn></mrow></msub><mo>′</mo></mrow></math></span> transition to well above the NH<sub>3</sub><sup>+</sup> <span><math><msup><mrow><mover><mi>X</mi><mo>̃</mo></mover></mrow><mo>+</mo></msup></math></span> <sup>2</sup><span><math><mrow><msub><mi>A</mi><mrow><mn>2</mn></mrow></msub><mo>″</mo></mrow></math></span> ionization threshold. The spectra were recorded at a measured resolution of 0.23 cm<sup>−1</sup> in both a room-temperature cell (293 K) and in a slit-jet supersonic expansion (∼70 K). The absolute photoabsorption cross section with an uncertainty of ± 5% is also reported for the room-temperature spectrum. The present resolution is a factor of 10 – 100 times higher than in other recently reported broad band spectra of ammonia, and many of the observed bands show partially resolved rotational structure. We have attempted to assign this structure for a number of these bands. The oscillator strengths extracted from the data are in good agreement with previous measurements but, in the case of structured bands, the present higher resolution measurements return higher peak absorption cross sections, that increase further when the sample is cooled. The present higher resolution spectra suggest that a number of previous vibronic band assignments that were based on quantum defect considerations may require some revision. Finally, we discuss the substantial differences between the photoabsorption and photoionization data just above the first ionization threshold.</p></div>\",\"PeriodicalId\":16367,\"journal\":{\"name\":\"Journal of Molecular Spectroscopy\",\"volume\":\"396 \",\"pages\":\"Article 111810\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022285223000759\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285223000759","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用同步加速器SOLEIL的傅里叶变换光谱仪记录了氨在59,000 cm - 1和93,000 cm - 1之间的高分辨率光吸收光谱。这个区域从刚好高于frank - condon包络层的Ã 1A2″←X²1A1 '跃迁延伸到远高于NH3+ X²²²″电离阈值。在室温电池(293 K)和缝流射流超音速膨胀(~ 70 K)下,以0.23 cm−1的测量分辨率记录了光谱。室温光谱的绝对光吸收截面的不确定度为±5%。目前的分辨率比其他最近报道的氨的宽带光谱高10 - 100倍,并且许多观察到的波段显示部分分解的旋转结构。我们已经尝试将这种结构分配给许多这样的波段。从数据中提取的振荡器强度与先前的测量结果很好地一致,但是,在结构化波段的情况下,目前更高分辨率的测量结果返回更高的峰值吸收截面,当样品冷却时,这一峰值吸收截面进一步增加。目前的高分辨率光谱表明,以前一些基于量子缺陷考虑的振动带分配可能需要一些修正。最后,我们讨论了光吸收和光电离数据在第一电离阈值以上的实质性差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-resolution absorption spectroscopy of room-temperature and jet-cooled ammonia between 59,000 and 93,000 cm−1

We present new high-resolution photoabsorption spectra of ammonia spanning the region between 59,000 cm−1 and 93,000 cm−1 that were recorded by using the Fourier Transform Spectrometer at the Synchrotron SOLEIL. This region extends from just above the Franck-Condon envelope for the à 1A2X̃ 1A1 transition to well above the NH3+ X̃+ 2A2 ionization threshold. The spectra were recorded at a measured resolution of 0.23 cm−1 in both a room-temperature cell (293 K) and in a slit-jet supersonic expansion (∼70 K). The absolute photoabsorption cross section with an uncertainty of ± 5% is also reported for the room-temperature spectrum. The present resolution is a factor of 10 – 100 times higher than in other recently reported broad band spectra of ammonia, and many of the observed bands show partially resolved rotational structure. We have attempted to assign this structure for a number of these bands. The oscillator strengths extracted from the data are in good agreement with previous measurements but, in the case of structured bands, the present higher resolution measurements return higher peak absorption cross sections, that increase further when the sample is cooled. The present higher resolution spectra suggest that a number of previous vibronic band assignments that were based on quantum defect considerations may require some revision. Finally, we discuss the substantial differences between the photoabsorption and photoionization data just above the first ionization threshold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
期刊最新文献
Spectral features for systematic aluminum replacement in N2H2 and c-N4H4 isomers High resolution laser diode spectroscopy of the hot bands of C2HD in the first overtone region of C-H stretching Buffer-gas cooling of hydrogen cyanide quantified by cavity-ringdown spectroscopy Pure rotational spectroscopic measurements on the electronic ground states of Hafnium monosulfide and Thorium monosulfide in highly excited vibrational states Isotopic species, vibrational states and nuclear quadrupole splitting in CH2Cl2 from rotational spectroscopy at 8–18 GHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1