Zi-Fei Lin , Yan-Ming Liang , Jia-Li Zhao , Jiao-Rui Li
{"title":"利用混合深度网络预测Lotka‐Volterra方程的解","authors":"Zi-Fei Lin , Yan-Ming Liang , Jia-Li Zhao , Jiao-Rui Li","doi":"10.1016/j.taml.2022.100384","DOIUrl":null,"url":null,"abstract":"<div><p>Prediction of Lotka-Volterra equations has always been a complex problem due to their dynamic properties. In this paper, we present an algorithm for predicting the Lotka-Volterra equation and investigate the prediction for both the original system and the system driven by noise. This demonstrates that deep learning can be applied in dynamics of population. This is the first study that uses deep learning algorithms to predict Lotka-Volterra equations. Several numerical examples are presented to illustrate the performances of the proposed algorithm, including Predator nonlinear breeding and prey competition systems, one prey and two predator competition systems, and their respective systems. All the results suggest that the proposed algorithm is feasible and effective for predicting Lotka-Volterra equations. Furthermore, the influence of the optimizer on the algorithm is discussed in detail. These results indicate that the performance of the machine learning technique can be improved by constructing the neural networks appropriately.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034922000642/pdfft?md5=206b18bf31ec90ab00a5aa32543d0d0b&pid=1-s2.0-S2095034922000642-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Predicting solutions of the Lotka‐Volterra equation using hybrid deep network\",\"authors\":\"Zi-Fei Lin , Yan-Ming Liang , Jia-Li Zhao , Jiao-Rui Li\",\"doi\":\"10.1016/j.taml.2022.100384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prediction of Lotka-Volterra equations has always been a complex problem due to their dynamic properties. In this paper, we present an algorithm for predicting the Lotka-Volterra equation and investigate the prediction for both the original system and the system driven by noise. This demonstrates that deep learning can be applied in dynamics of population. This is the first study that uses deep learning algorithms to predict Lotka-Volterra equations. Several numerical examples are presented to illustrate the performances of the proposed algorithm, including Predator nonlinear breeding and prey competition systems, one prey and two predator competition systems, and their respective systems. All the results suggest that the proposed algorithm is feasible and effective for predicting Lotka-Volterra equations. Furthermore, the influence of the optimizer on the algorithm is discussed in detail. These results indicate that the performance of the machine learning technique can be improved by constructing the neural networks appropriately.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000642/pdfft?md5=206b18bf31ec90ab00a5aa32543d0d0b&pid=1-s2.0-S2095034922000642-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034922000642\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000642","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Predicting solutions of the Lotka‐Volterra equation using hybrid deep network
Prediction of Lotka-Volterra equations has always been a complex problem due to their dynamic properties. In this paper, we present an algorithm for predicting the Lotka-Volterra equation and investigate the prediction for both the original system and the system driven by noise. This demonstrates that deep learning can be applied in dynamics of population. This is the first study that uses deep learning algorithms to predict Lotka-Volterra equations. Several numerical examples are presented to illustrate the performances of the proposed algorithm, including Predator nonlinear breeding and prey competition systems, one prey and two predator competition systems, and their respective systems. All the results suggest that the proposed algorithm is feasible and effective for predicting Lotka-Volterra equations. Furthermore, the influence of the optimizer on the algorithm is discussed in detail. These results indicate that the performance of the machine learning technique can be improved by constructing the neural networks appropriately.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).