{"title":"从二维归一化全梯度重力异常看羌塘和松潘-甘孜地体的地壳结构","authors":"Songbai Xuan , Chongyang Shen","doi":"10.1016/j.geog.2022.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau. However, crust–mantle evolution and crustal response to the Indian lithospheric subduction are still controversial. Answering these questions requires additional information regarding crustal structure. In this study, the 2-D normalized full gradient (NFG) of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes. The NFG-derived structures with low-order harmonic numbers (<em>N</em> = 33 and <em>N</em> = 43) showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape, suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle. The NFG images with harmonic number <em>N</em> = 53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane, consistent with thickening crust and resistance of lower crustal flow. The anomalous source demonstrated by the NFG results with harmonic number <em>N</em> = 71, located in the upper crust underneath the Ganzi-Yushu fault, suggested a seismogenic body of the 2010 <em>M</em><sub>W</sub>6.9 Yushu event.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"13 6","pages":"Pages 535-543"},"PeriodicalIF":2.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674984722000519/pdfft?md5=3b8f11fd7eef83d3689e05c33e1ba2d8&pid=1-s2.0-S1674984722000519-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Crustal structure of the Qiangtang and Songpan-Ganzi terranes (eastern Tibet) from the 2-D normalized full gradient of gravity anomaly\",\"authors\":\"Songbai Xuan , Chongyang Shen\",\"doi\":\"10.1016/j.geog.2022.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau. However, crust–mantle evolution and crustal response to the Indian lithospheric subduction are still controversial. Answering these questions requires additional information regarding crustal structure. In this study, the 2-D normalized full gradient (NFG) of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes. The NFG-derived structures with low-order harmonic numbers (<em>N</em> = 33 and <em>N</em> = 43) showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape, suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle. The NFG images with harmonic number <em>N</em> = 53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane, consistent with thickening crust and resistance of lower crustal flow. The anomalous source demonstrated by the NFG results with harmonic number <em>N</em> = 71, located in the upper crust underneath the Ganzi-Yushu fault, suggested a seismogenic body of the 2010 <em>M</em><sub>W</sub>6.9 Yushu event.</p></div>\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":\"13 6\",\"pages\":\"Pages 535-543\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674984722000519/pdfft?md5=3b8f11fd7eef83d3689e05c33e1ba2d8&pid=1-s2.0-S1674984722000519-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674984722000519\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984722000519","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Crustal structure of the Qiangtang and Songpan-Ganzi terranes (eastern Tibet) from the 2-D normalized full gradient of gravity anomaly
Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau. However, crust–mantle evolution and crustal response to the Indian lithospheric subduction are still controversial. Answering these questions requires additional information regarding crustal structure. In this study, the 2-D normalized full gradient (NFG) of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes. The NFG-derived structures with low-order harmonic numbers (N = 33 and N = 43) showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape, suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle. The NFG images with harmonic number N = 53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane, consistent with thickening crust and resistance of lower crustal flow. The anomalous source demonstrated by the NFG results with harmonic number N = 71, located in the upper crust underneath the Ganzi-Yushu fault, suggested a seismogenic body of the 2010 MW6.9 Yushu event.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.