Shengmin LIANG, Yingning ZOU, Bo SHU, Qiangsheng WU
{"title":"丛枝菌根真菌和内生真菌对土壤淹水对桃多胺或脯氨酸的差异调节","authors":"Shengmin LIANG, Yingning ZOU, Bo SHU, Qiangsheng WU","doi":"10.1016/j.pedsph.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Symbiotic fungi are involved in plant flooding tolerance, while the underlying mechanism is not yet known. Since polyamines (PAs) and proline are also associated with stress tolerance, it is hypothesized that the enhancement of stress resistance by symbiotic fungi is associated with changes in PAs and/or proline. The aim of this study was to analyze the effect of inoculation with <em>Funneliformis mosseae</em> and <em>Serendipita indica</em> on plant growth, PAs, and proline and the metabolisms in peach (<em>Prunus persica</em>) under flooding. Two-week flooding did not affect root colonization frequence of <em>F. mosseae</em>, while it promoted root colonization frequence of <em>S. indica</em>. Under flooding, plants inoculated with <em>F. mosseae</em> and <em>S. indica</em> maintained relatively higher growth rates than uninoculated plants. <em>Funneliformis mosseae</em> promoted root ornithine (Orn) contentration and arginine (Arg) and Orn decarboxylase activities under flooding, which promoted putrescine (Put), cadaverine (Cad), and spermidine (Spd) contentrations. Conversely, <em>S. indica</em> decreased contentrations of Arg, Orn, and agmatine and Arg decarboxylase activities, thus decreasing PA contentrations under flooding. Polyamines were negatively correlated with the expression of PA uptake transporter genes, <em>PpPUT1</em> and <em>PpPUT2</em>, in peach. Polyamine transporter genes of <em>F. mosseae</em> (<em>FmTPO</em>) and <em>S. indica</em> (<em>SiTPO</em>) were regulated by flooding, of which <em>FmTPO1</em> was positively correlated with Put, Cad, and Spd, along with positive correlations of Spd with <em>SiTPO1</em>, <em>SiTPO2</em>, and <em>SiTPO4</em>. Under flooding, <em>F. mosseae</em> decreased proline concentration, while <em>S. indica</em> increased proline concentration and correlated with expression of a Δ<sup>1</sup><em>-pyrroline-5-carboxylate synthetase</em> gene, <em>PpP5CS2</em>. It was thus concluded that <em>F. mosseae</em> modulated polyamine accumulation, while <em>S. indica</em> induced proline accumulation to tolerate flooding.}</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 2","pages":"Pages 460-472"},"PeriodicalIF":5.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbuscular mycorrhizal fungi and endophytic fungi differentially modulate polyamines or proline of peach in response to soil flooding\",\"authors\":\"Shengmin LIANG, Yingning ZOU, Bo SHU, Qiangsheng WU\",\"doi\":\"10.1016/j.pedsph.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Symbiotic fungi are involved in plant flooding tolerance, while the underlying mechanism is not yet known. Since polyamines (PAs) and proline are also associated with stress tolerance, it is hypothesized that the enhancement of stress resistance by symbiotic fungi is associated with changes in PAs and/or proline. The aim of this study was to analyze the effect of inoculation with <em>Funneliformis mosseae</em> and <em>Serendipita indica</em> on plant growth, PAs, and proline and the metabolisms in peach (<em>Prunus persica</em>) under flooding. Two-week flooding did not affect root colonization frequence of <em>F. mosseae</em>, while it promoted root colonization frequence of <em>S. indica</em>. Under flooding, plants inoculated with <em>F. mosseae</em> and <em>S. indica</em> maintained relatively higher growth rates than uninoculated plants. <em>Funneliformis mosseae</em> promoted root ornithine (Orn) contentration and arginine (Arg) and Orn decarboxylase activities under flooding, which promoted putrescine (Put), cadaverine (Cad), and spermidine (Spd) contentrations. Conversely, <em>S. indica</em> decreased contentrations of Arg, Orn, and agmatine and Arg decarboxylase activities, thus decreasing PA contentrations under flooding. Polyamines were negatively correlated with the expression of PA uptake transporter genes, <em>PpPUT1</em> and <em>PpPUT2</em>, in peach. Polyamine transporter genes of <em>F. mosseae</em> (<em>FmTPO</em>) and <em>S. indica</em> (<em>SiTPO</em>) were regulated by flooding, of which <em>FmTPO1</em> was positively correlated with Put, Cad, and Spd, along with positive correlations of Spd with <em>SiTPO1</em>, <em>SiTPO2</em>, and <em>SiTPO4</em>. Under flooding, <em>F. mosseae</em> decreased proline concentration, while <em>S. indica</em> increased proline concentration and correlated with expression of a Δ<sup>1</sup><em>-pyrroline-5-carboxylate synthetase</em> gene, <em>PpP5CS2</em>. It was thus concluded that <em>F. mosseae</em> modulated polyamine accumulation, while <em>S. indica</em> induced proline accumulation to tolerate flooding.}</p></div>\",\"PeriodicalId\":49709,\"journal\":{\"name\":\"Pedosphere\",\"volume\":\"34 2\",\"pages\":\"Pages 460-472\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedosphere\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002016023000516\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016023000516","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
共生真菌参与了植物的耐涝性,但其基本机制尚不清楚。由于多胺(PAs)和脯氨酸也与抗逆性有关,因此假设共生真菌对抗逆性的增强与多胺和/或脯氨酸的变化有关。本研究旨在分析接种Funneliformis mosseae和Serendipita indica对水淹条件下桃(Prunus persica)的植物生长、PAs和脯氨酸以及新陈代谢的影响。淹水两周不会影响 F. mosseae 的根部定殖频率,而会促进 S. indica 的根部定殖频率。在淹水条件下,接种了 F. mosseae 和 S. indica 的植株比未接种的植株保持了相对较高的生长率。在淹水条件下,Funneliformis mosseae 促进了根部鸟氨酸(Orn)含量、精氨酸(Arg)和鸟氨酸脱羧酶活性,从而促进了腐胺(Put)、尸胺(Cad)和精胺(Spd)含量。相反,S. indica 降低了 Arg、Orn 和苦参碱的含量以及 Arg 脱羧酶的活性,从而降低了淹没条件下 PA 的含量。多胺与桃中 PA 吸收转运体基因 PpPUT1 和 PpPUT2 的表达呈负相关。F. mosseae(FmTPO)和 S. indica(SiTPO)的多胺转运体基因受水淹调控,其中 FmTPO1 与 Put、Cad 和 Spd 呈正相关,Spd 与 SiTPO1、SiTPO2 和 SiTPO4 呈正相关。在淹水条件下,F. mosseae 的脯氨酸浓度降低,而 S. indica 的脯氨酸浓度升高,并与Δ1-吡咯啉-5-羧酸合成酶基因 PpP5CS2 的表达相关。由此得出结论:F. mosseae调节多胺积累,而S. indica诱导脯氨酸积累以耐受洪水。}
Arbuscular mycorrhizal fungi and endophytic fungi differentially modulate polyamines or proline of peach in response to soil flooding
Symbiotic fungi are involved in plant flooding tolerance, while the underlying mechanism is not yet known. Since polyamines (PAs) and proline are also associated with stress tolerance, it is hypothesized that the enhancement of stress resistance by symbiotic fungi is associated with changes in PAs and/or proline. The aim of this study was to analyze the effect of inoculation with Funneliformis mosseae and Serendipita indica on plant growth, PAs, and proline and the metabolisms in peach (Prunus persica) under flooding. Two-week flooding did not affect root colonization frequence of F. mosseae, while it promoted root colonization frequence of S. indica. Under flooding, plants inoculated with F. mosseae and S. indica maintained relatively higher growth rates than uninoculated plants. Funneliformis mosseae promoted root ornithine (Orn) contentration and arginine (Arg) and Orn decarboxylase activities under flooding, which promoted putrescine (Put), cadaverine (Cad), and spermidine (Spd) contentrations. Conversely, S. indica decreased contentrations of Arg, Orn, and agmatine and Arg decarboxylase activities, thus decreasing PA contentrations under flooding. Polyamines were negatively correlated with the expression of PA uptake transporter genes, PpPUT1 and PpPUT2, in peach. Polyamine transporter genes of F. mosseae (FmTPO) and S. indica (SiTPO) were regulated by flooding, of which FmTPO1 was positively correlated with Put, Cad, and Spd, along with positive correlations of Spd with SiTPO1, SiTPO2, and SiTPO4. Under flooding, F. mosseae decreased proline concentration, while S. indica increased proline concentration and correlated with expression of a Δ1-pyrroline-5-carboxylate synthetase gene, PpP5CS2. It was thus concluded that F. mosseae modulated polyamine accumulation, while S. indica induced proline accumulation to tolerate flooding.}
期刊介绍:
PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.