Yeongjae Park, H. Yoo, Jieun Ryu, Young-Rak Choi, Ju-Sung Kang, Yongjin Yeom
{"title":"基于政府公钥基础设施的视频会议系统端到端后量子加密协议","authors":"Yeongjae Park, H. Yoo, Jieun Ryu, Young-Rak Choi, Ju-Sung Kang, Yongjin Yeom","doi":"10.3390/asi6040066","DOIUrl":null,"url":null,"abstract":"Owing to the expansion of non-face-to-face activities, security issues in video conferencing systems are becoming more critical. In this paper, we focus on the end-to-end encryption (E2EE) function among the security services of video conferencing systems. First, the E2EE-related protocols of Zoom and Secure Frame (SFrame), which are representative video conferencing systems, are thoroughly investigated, and the two systems are compared and analyzed from the overall viewpoint. Next, the E2EE protocol in a Government Public Key Infrastructure (GPKI)-based video conferencing system, in which the user authentication mechanism is fundamentally different from those used in commercial sector systems such as Zoom and SFrame, is considered. In particular, among E2EE-related protocols, we propose a detailed mechanism in which the post-quantum cryptography (PQC) key encapsulation mechanism (KEM) is applied to the user key exchange process. Since the session key is not disclosed to the central server, even in futuristic quantum computers, the proposed mechanism, which includes the PQC KEM, still satisfies the E2EE security requirements in the quantum environment. Moreover, our GPKI-based mechanism induces the effect of enhancing the security level of the next-generation video conferencing systems up to a quantum-safe level.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-to-End Post-Quantum Cryptography Encryption Protocol for Video Conferencing System Based on Government Public Key Infrastructure\",\"authors\":\"Yeongjae Park, H. Yoo, Jieun Ryu, Young-Rak Choi, Ju-Sung Kang, Yongjin Yeom\",\"doi\":\"10.3390/asi6040066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the expansion of non-face-to-face activities, security issues in video conferencing systems are becoming more critical. In this paper, we focus on the end-to-end encryption (E2EE) function among the security services of video conferencing systems. First, the E2EE-related protocols of Zoom and Secure Frame (SFrame), which are representative video conferencing systems, are thoroughly investigated, and the two systems are compared and analyzed from the overall viewpoint. Next, the E2EE protocol in a Government Public Key Infrastructure (GPKI)-based video conferencing system, in which the user authentication mechanism is fundamentally different from those used in commercial sector systems such as Zoom and SFrame, is considered. In particular, among E2EE-related protocols, we propose a detailed mechanism in which the post-quantum cryptography (PQC) key encapsulation mechanism (KEM) is applied to the user key exchange process. Since the session key is not disclosed to the central server, even in futuristic quantum computers, the proposed mechanism, which includes the PQC KEM, still satisfies the E2EE security requirements in the quantum environment. Moreover, our GPKI-based mechanism induces the effect of enhancing the security level of the next-generation video conferencing systems up to a quantum-safe level.\",\"PeriodicalId\":36273,\"journal\":{\"name\":\"Applied System Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied System Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/asi6040066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi6040066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
End-to-End Post-Quantum Cryptography Encryption Protocol for Video Conferencing System Based on Government Public Key Infrastructure
Owing to the expansion of non-face-to-face activities, security issues in video conferencing systems are becoming more critical. In this paper, we focus on the end-to-end encryption (E2EE) function among the security services of video conferencing systems. First, the E2EE-related protocols of Zoom and Secure Frame (SFrame), which are representative video conferencing systems, are thoroughly investigated, and the two systems are compared and analyzed from the overall viewpoint. Next, the E2EE protocol in a Government Public Key Infrastructure (GPKI)-based video conferencing system, in which the user authentication mechanism is fundamentally different from those used in commercial sector systems such as Zoom and SFrame, is considered. In particular, among E2EE-related protocols, we propose a detailed mechanism in which the post-quantum cryptography (PQC) key encapsulation mechanism (KEM) is applied to the user key exchange process. Since the session key is not disclosed to the central server, even in futuristic quantum computers, the proposed mechanism, which includes the PQC KEM, still satisfies the E2EE security requirements in the quantum environment. Moreover, our GPKI-based mechanism induces the effect of enhancing the security level of the next-generation video conferencing systems up to a quantum-safe level.