基于图像融合的无人地面车辆行驶路径检测

D. Chandy, Biji Yohannan, A. Christinal, Riju Ghosh
{"title":"基于图像融合的无人地面车辆行驶路径检测","authors":"D. Chandy, Biji Yohannan, A. Christinal, Riju Ghosh","doi":"10.1504/IJVAS.2019.10021435","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles are used for a range of tasks, such as automated highway driving, transporting work, etc. These vehicles are used both in structured and unstructured environments. This work presents an effective method for path detection using statistical texture features extracted from fused LIDAR sensor and visual camera images. An edge-based feature detection approach is adopted for image registration. The Grey Level Co-occurrence Matrix (GLCM)-based texture features are extracted from the fused image. Classification performance of K-NN and Support Vector Machine (SVM) classifiers are analysed in this work. For experimentation, the data available in Ford Campus Vision data set are used. The results of this new approach are very promising for path detection problem of unmanned ground vehicles.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Drivable path detection based on image fusion for unmanned ground vehicles\",\"authors\":\"D. Chandy, Biji Yohannan, A. Christinal, Riju Ghosh\",\"doi\":\"10.1504/IJVAS.2019.10021435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicles are used for a range of tasks, such as automated highway driving, transporting work, etc. These vehicles are used both in structured and unstructured environments. This work presents an effective method for path detection using statistical texture features extracted from fused LIDAR sensor and visual camera images. An edge-based feature detection approach is adopted for image registration. The Grey Level Co-occurrence Matrix (GLCM)-based texture features are extracted from the fused image. Classification performance of K-NN and Support Vector Machine (SVM) classifiers are analysed in this work. For experimentation, the data available in Ford Campus Vision data set are used. The results of this new approach are very promising for path detection problem of unmanned ground vehicles.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVAS.2019.10021435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2019.10021435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

自动驾驶汽车用于一系列任务,如自动高速公路驾驶、运输工作等。这些工具可以在结构化和非结构化环境中使用。本文提出了一种有效的路径检测方法,该方法利用融合LIDAR传感器和视觉相机图像提取统计纹理特征。采用基于边缘的特征检测方法进行图像配准。从融合图像中提取基于灰度共生矩阵的纹理特征。本文分析了K-NN和支持向量机分类器的分类性能。为了进行实验,使用了福特校园视觉数据集中的数据。该方法对地面无人驾驶车辆的路径检测问题具有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drivable path detection based on image fusion for unmanned ground vehicles
Autonomous vehicles are used for a range of tasks, such as automated highway driving, transporting work, etc. These vehicles are used both in structured and unstructured environments. This work presents an effective method for path detection using statistical texture features extracted from fused LIDAR sensor and visual camera images. An edge-based feature detection approach is adopted for image registration. The Grey Level Co-occurrence Matrix (GLCM)-based texture features are extracted from the fused image. Classification performance of K-NN and Support Vector Machine (SVM) classifiers are analysed in this work. For experimentation, the data available in Ford Campus Vision data set are used. The results of this new approach are very promising for path detection problem of unmanned ground vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Autonomous Systems
International Journal of Vehicle Autonomous Systems Engineering-Automotive Engineering
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: The IJVAS provides an international forum and refereed reference in the field of vehicle autonomous systems research and development.
期刊最新文献
Development of autopilot control algorithm for an unmanned aerial vehicle based on simulation Performance evaluation of low-resolution monocular vision-based velocity estimation technique for moving obstacle detection and tracking Traffic sign recognition using deep learning A new fractional-order sliding mode controller for the cruise control system of automatic vehicles Decoupled 3-D object detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1