Ruiyu Wang , Yao Sun , Chao Zhang , Bowen Yang , Muhammad Imran , Lei Zhang
{"title":"一种新的毫米波网络切换方案:一种集成强化学习和优化的方法","authors":"Ruiyu Wang , Yao Sun , Chao Zhang , Bowen Yang , Muhammad Imran , Lei Zhang","doi":"10.1016/j.dcan.2023.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>The millimeter-Wave (mmWave) communication with the advantages of abundant bandwidth and immunity to interference has been deemed a promising technology to greatly improve network capacity. However, due to such characteristics of mmWave, as short transmission distance, high sensitivity to the blockage, and large propagation path loss, handover issues (including trigger condition and target beam selection) become much complicated. In this paper, we design a novel handover scheme to optimize the overall system throughput as well as the total system delay while guaranteeing the Quality of Service (QoS) of each User Equipment (UE). Specifically, the proposed handover scheme called O-MAPPO integrates the Reinforcement Learning (RL) algorithm and optimization theory. The RL algorithm known as Multi-Agent Proximal Policy Optimization (MAPPO) plays a role in determining handover trigger conditions. Further, we propose an optimization problem in conjunction with MAPPO to select the target base station. The aim is to evaluate and optimize the system performance of total throughput and delay while guaranteeing the QoS of each UE after the handover decision is made. The numerical results show the overall system throughput and delay with our method are slightly worse than that with the exhaustive search method but much better than that using another typical RL algorithm Deep Deterministic Policy Gradient (DDPG).</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 5","pages":"Pages 1493-1502"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel handover scheme for millimeter wave network: An approach of integrating reinforcement learning and optimization\",\"authors\":\"Ruiyu Wang , Yao Sun , Chao Zhang , Bowen Yang , Muhammad Imran , Lei Zhang\",\"doi\":\"10.1016/j.dcan.2023.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The millimeter-Wave (mmWave) communication with the advantages of abundant bandwidth and immunity to interference has been deemed a promising technology to greatly improve network capacity. However, due to such characteristics of mmWave, as short transmission distance, high sensitivity to the blockage, and large propagation path loss, handover issues (including trigger condition and target beam selection) become much complicated. In this paper, we design a novel handover scheme to optimize the overall system throughput as well as the total system delay while guaranteeing the Quality of Service (QoS) of each User Equipment (UE). Specifically, the proposed handover scheme called O-MAPPO integrates the Reinforcement Learning (RL) algorithm and optimization theory. The RL algorithm known as Multi-Agent Proximal Policy Optimization (MAPPO) plays a role in determining handover trigger conditions. Further, we propose an optimization problem in conjunction with MAPPO to select the target base station. The aim is to evaluate and optimize the system performance of total throughput and delay while guaranteeing the QoS of each UE after the handover decision is made. The numerical results show the overall system throughput and delay with our method are slightly worse than that with the exhaustive search method but much better than that using another typical RL algorithm Deep Deterministic Policy Gradient (DDPG).</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"10 5\",\"pages\":\"Pages 1493-1502\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001360\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001360","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A novel handover scheme for millimeter wave network: An approach of integrating reinforcement learning and optimization
The millimeter-Wave (mmWave) communication with the advantages of abundant bandwidth and immunity to interference has been deemed a promising technology to greatly improve network capacity. However, due to such characteristics of mmWave, as short transmission distance, high sensitivity to the blockage, and large propagation path loss, handover issues (including trigger condition and target beam selection) become much complicated. In this paper, we design a novel handover scheme to optimize the overall system throughput as well as the total system delay while guaranteeing the Quality of Service (QoS) of each User Equipment (UE). Specifically, the proposed handover scheme called O-MAPPO integrates the Reinforcement Learning (RL) algorithm and optimization theory. The RL algorithm known as Multi-Agent Proximal Policy Optimization (MAPPO) plays a role in determining handover trigger conditions. Further, we propose an optimization problem in conjunction with MAPPO to select the target base station. The aim is to evaluate and optimize the system performance of total throughput and delay while guaranteeing the QoS of each UE after the handover decision is made. The numerical results show the overall system throughput and delay with our method are slightly worse than that with the exhaustive search method but much better than that using another typical RL algorithm Deep Deterministic Policy Gradient (DDPG).
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.