碳含量对Fe3O4@ZnO-C纳米复合材料结构和磁性能的影响

Astuti Astuti, S. Arief, Devi Pebrina
{"title":"碳含量对Fe3O4@ZnO-C纳米复合材料结构和磁性能的影响","authors":"Astuti Astuti, S. Arief, Devi Pebrina","doi":"10.14710/jksa.25.10.362-367","DOIUrl":null,"url":null,"abstract":"Synthesis and characterization of structure magnetic properties of Fe3O4@ZnO- C nanocomposite have been done through the precipitation method. This study aimed to discover the effect of concentrations/thickness of carbon layer on crystal structure and magnetic properties of Fe3O4@ZnO-C nanocomposites. Fe3O4 and Fe3O4@ZnO were the samples used in the study, and variations in the amount of carbon were 0.2, 0.1, and 0.05 g. Nanocomposites were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Based on the results of XRD, it has been found that the crystal structure for Fe3O4 was cubic, while ZnO was hexagonal wurtzite. The addition of carbons to Fe3O4@ZnO caused a broadening of the diffraction peaks and a decrease in the degree of crystallinity. The bonds formed on Fe3O4@ZnO-C nanocomposites, i.e. Fe-O bonds indicated the formation of Fe3O4, Zn-O bonds showed the formation of ZnO and C-O, C-H, and O-H bonds revealed the presence of a carbon layer originated from glucose. The VSM results showed that the magnetic saturation decreased with increasing carbon mass. Overall, the carbon-coated nanocomposite material with a carbon mass variation of 0.2, 0.1, and 0.05 g showed superparamagnetic properties with a magnetic saturation of 18.23 emu/g, 19.33 emu/g and 22.05 emu/g, while for the coercive field of 92.29 Oe, 92.90 Oe and 89.60 Oe, respectively. Based on these characterization results, Fe3O4@ZnO-C nanocomposite materials can potentially be developed as biomedical materials, such as the materials for photothermal therapy for cancer cells.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Amount of Carbon in the Fe3O4@ZnO-C Nanocomposites on Its Structure and Magnetic Properties\",\"authors\":\"Astuti Astuti, S. Arief, Devi Pebrina\",\"doi\":\"10.14710/jksa.25.10.362-367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesis and characterization of structure magnetic properties of Fe3O4@ZnO- C nanocomposite have been done through the precipitation method. This study aimed to discover the effect of concentrations/thickness of carbon layer on crystal structure and magnetic properties of Fe3O4@ZnO-C nanocomposites. Fe3O4 and Fe3O4@ZnO were the samples used in the study, and variations in the amount of carbon were 0.2, 0.1, and 0.05 g. Nanocomposites were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Based on the results of XRD, it has been found that the crystal structure for Fe3O4 was cubic, while ZnO was hexagonal wurtzite. The addition of carbons to Fe3O4@ZnO caused a broadening of the diffraction peaks and a decrease in the degree of crystallinity. The bonds formed on Fe3O4@ZnO-C nanocomposites, i.e. Fe-O bonds indicated the formation of Fe3O4, Zn-O bonds showed the formation of ZnO and C-O, C-H, and O-H bonds revealed the presence of a carbon layer originated from glucose. The VSM results showed that the magnetic saturation decreased with increasing carbon mass. Overall, the carbon-coated nanocomposite material with a carbon mass variation of 0.2, 0.1, and 0.05 g showed superparamagnetic properties with a magnetic saturation of 18.23 emu/g, 19.33 emu/g and 22.05 emu/g, while for the coercive field of 92.29 Oe, 92.90 Oe and 89.60 Oe, respectively. Based on these characterization results, Fe3O4@ZnO-C nanocomposite materials can potentially be developed as biomedical materials, such as the materials for photothermal therapy for cancer cells.\",\"PeriodicalId\":17811,\"journal\":{\"name\":\"Jurnal Kimia Sains dan Aplikasi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kimia Sains dan Aplikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jksa.25.10.362-367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Sains dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jksa.25.10.362-367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用沉淀法合成了Fe3O4@ZnO- C纳米复合材料并对其结构磁性能进行了表征。本研究旨在发现碳层浓度/厚度对Fe3O4@ZnO-C纳米复合材料晶体结构和磁性能的影响。研究中使用的样品为Fe3O4和Fe3O4@ZnO,碳含量的变化分别为0.2、0.1和0.05 g。采用x射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和振动样品磁强计(VSM)对纳米复合材料进行了表征。XRD结果表明,Fe3O4的晶体结构为立方型,而ZnO的晶体结构为六方纤锌矿型。在Fe3O4@ZnO中加入碳后,衍射峰变宽,结晶度降低。在Fe3O4@ZnO-C纳米复合材料上形成的键,即Fe-O键表明Fe3O4的形成,Zn-O键表明ZnO和C-O、C-H的形成,O-H键表明葡萄糖源碳层的存在。VSM结果表明,磁性饱和度随碳质量的增加而降低。总体而言,碳质量变化为0.2、0.1和0.05 g的碳包覆纳米复合材料表现出超顺磁性,磁饱和度分别为18.23、19.33和22.05 emu/g,矫顽力场分别为92.29、92.90和89.60 Oe。基于这些表征结果,Fe3O4@ZnO-C纳米复合材料可能被开发为生物医学材料,例如用于癌细胞光热治疗的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of the Amount of Carbon in the Fe3O4@ZnO-C Nanocomposites on Its Structure and Magnetic Properties
Synthesis and characterization of structure magnetic properties of Fe3O4@ZnO- C nanocomposite have been done through the precipitation method. This study aimed to discover the effect of concentrations/thickness of carbon layer on crystal structure and magnetic properties of Fe3O4@ZnO-C nanocomposites. Fe3O4 and Fe3O4@ZnO were the samples used in the study, and variations in the amount of carbon were 0.2, 0.1, and 0.05 g. Nanocomposites were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Based on the results of XRD, it has been found that the crystal structure for Fe3O4 was cubic, while ZnO was hexagonal wurtzite. The addition of carbons to Fe3O4@ZnO caused a broadening of the diffraction peaks and a decrease in the degree of crystallinity. The bonds formed on Fe3O4@ZnO-C nanocomposites, i.e. Fe-O bonds indicated the formation of Fe3O4, Zn-O bonds showed the formation of ZnO and C-O, C-H, and O-H bonds revealed the presence of a carbon layer originated from glucose. The VSM results showed that the magnetic saturation decreased with increasing carbon mass. Overall, the carbon-coated nanocomposite material with a carbon mass variation of 0.2, 0.1, and 0.05 g showed superparamagnetic properties with a magnetic saturation of 18.23 emu/g, 19.33 emu/g and 22.05 emu/g, while for the coercive field of 92.29 Oe, 92.90 Oe and 89.60 Oe, respectively. Based on these characterization results, Fe3O4@ZnO-C nanocomposite materials can potentially be developed as biomedical materials, such as the materials for photothermal therapy for cancer cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
36
审稿时长
17 weeks
期刊最新文献
Production of Biodiesel from Candlenut Seed Oil (Aleurites Moluccana Wild) Using a NaOH/CaO/Ca Catalyst with Microwave Heating Synthesis of Molecularly Imprinted Polymers with Magnetite Cores for Ibuprofen Adsorption Impact of Fermentation on Hyptolide and Phytochemical Composition of Hyptis pectinata (L.) Poit Effects of Temperature, Molecular Weight, and Non-Solvent Variation on the Physical Properties of PVDF Membranes Prepared through Immersion Precipitation Isolation of Phenolic Acids from Land Kale (Ipomoea reptans Poir) and Antioxidant Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1