{"title":"用57Fe-58Fe双尖峰技术在MC-ICPMS上进行高精度Fe同位素分析","authors":"Yongsheng He","doi":"10.46770/as.2022.062","DOIUrl":null,"url":null,"abstract":"Herein we report procedures based on multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for high-precision Fe isotopic analysis using a 57Fe-58Fe double spike technique. Iron purification was achieved using AG1-X8 in HCl media following previously or newly established procedures. In the new procedure, smaller columns with 4 mm diameter were used, containing 0.4 mL AG1-X8, thus greatly reducing the operation time and the amount of acid and resin consumed compared to the previously established method using 1 mL resin. Potential trace Ni interference on 58Fe was suppressed by increasing the total Fe ion intensity to ≥ 120 V. Measurements of GSB Fe solutions doped with mono-elements demonstrated that a mass bias correction by the 57Fe-58Fe double spike was robust if Ca/Fe ≤ 1.0, Al/Fe ≤ 1.0, Cu/Fe ≤ 1.0, Co/Fe ≤ 0.1, Ni/Fe ≤ 10-4, and Cr/Fe ≤ 10-4. Monitoring of pure Fe standard solutions, viz. IRMM-014 and NIST3126a, and geological reference materials, viz. JP-1, BHVO-2, W-2a, GSP-2, and COQ-1, over nine months yielded δ56Fe (relative to IRMM-014) values of 0.003 ± 0.013‰ (2 SD, N = 20), 0.368 ± 0.011‰ (2 SD, N = 30), 0.019 ± 0.018‰ (2 SD, N = 15), 0.109 ± 0.017‰ (2 SD, N = 30), 0.049 ± 0.018‰ (2 SD, N = 17), 0.155 ± 0.018‰ (2 SD, N = 14), and -0.066 ± 0.022‰ (2 SD, N = 20), respectively, consistent with the recommended values within quoted errors. Based on repeated analyses of the standards, the long-term precision of our double spike method is better than 0.02‰ for δ56Fe on average, proving its ability to distinguish small isotope fractionation among high-temperature samples.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Precision Fe Isotope Analysis On MC-ICPMS Using A 57Fe-58Fe Double Spike Technique\",\"authors\":\"Yongsheng He\",\"doi\":\"10.46770/as.2022.062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein we report procedures based on multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for high-precision Fe isotopic analysis using a 57Fe-58Fe double spike technique. Iron purification was achieved using AG1-X8 in HCl media following previously or newly established procedures. In the new procedure, smaller columns with 4 mm diameter were used, containing 0.4 mL AG1-X8, thus greatly reducing the operation time and the amount of acid and resin consumed compared to the previously established method using 1 mL resin. Potential trace Ni interference on 58Fe was suppressed by increasing the total Fe ion intensity to ≥ 120 V. Measurements of GSB Fe solutions doped with mono-elements demonstrated that a mass bias correction by the 57Fe-58Fe double spike was robust if Ca/Fe ≤ 1.0, Al/Fe ≤ 1.0, Cu/Fe ≤ 1.0, Co/Fe ≤ 0.1, Ni/Fe ≤ 10-4, and Cr/Fe ≤ 10-4. Monitoring of pure Fe standard solutions, viz. IRMM-014 and NIST3126a, and geological reference materials, viz. JP-1, BHVO-2, W-2a, GSP-2, and COQ-1, over nine months yielded δ56Fe (relative to IRMM-014) values of 0.003 ± 0.013‰ (2 SD, N = 20), 0.368 ± 0.011‰ (2 SD, N = 30), 0.019 ± 0.018‰ (2 SD, N = 15), 0.109 ± 0.017‰ (2 SD, N = 30), 0.049 ± 0.018‰ (2 SD, N = 17), 0.155 ± 0.018‰ (2 SD, N = 14), and -0.066 ± 0.022‰ (2 SD, N = 20), respectively, consistent with the recommended values within quoted errors. Based on repeated analyses of the standards, the long-term precision of our double spike method is better than 0.02‰ for δ56Fe on average, proving its ability to distinguish small isotope fractionation among high-temperature samples.\",\"PeriodicalId\":8642,\"journal\":{\"name\":\"Atomic Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46770/as.2022.062\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2022.062","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
High-Precision Fe Isotope Analysis On MC-ICPMS Using A 57Fe-58Fe Double Spike Technique
Herein we report procedures based on multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for high-precision Fe isotopic analysis using a 57Fe-58Fe double spike technique. Iron purification was achieved using AG1-X8 in HCl media following previously or newly established procedures. In the new procedure, smaller columns with 4 mm diameter were used, containing 0.4 mL AG1-X8, thus greatly reducing the operation time and the amount of acid and resin consumed compared to the previously established method using 1 mL resin. Potential trace Ni interference on 58Fe was suppressed by increasing the total Fe ion intensity to ≥ 120 V. Measurements of GSB Fe solutions doped with mono-elements demonstrated that a mass bias correction by the 57Fe-58Fe double spike was robust if Ca/Fe ≤ 1.0, Al/Fe ≤ 1.0, Cu/Fe ≤ 1.0, Co/Fe ≤ 0.1, Ni/Fe ≤ 10-4, and Cr/Fe ≤ 10-4. Monitoring of pure Fe standard solutions, viz. IRMM-014 and NIST3126a, and geological reference materials, viz. JP-1, BHVO-2, W-2a, GSP-2, and COQ-1, over nine months yielded δ56Fe (relative to IRMM-014) values of 0.003 ± 0.013‰ (2 SD, N = 20), 0.368 ± 0.011‰ (2 SD, N = 30), 0.019 ± 0.018‰ (2 SD, N = 15), 0.109 ± 0.017‰ (2 SD, N = 30), 0.049 ± 0.018‰ (2 SD, N = 17), 0.155 ± 0.018‰ (2 SD, N = 14), and -0.066 ± 0.022‰ (2 SD, N = 20), respectively, consistent with the recommended values within quoted errors. Based on repeated analyses of the standards, the long-term precision of our double spike method is better than 0.02‰ for δ56Fe on average, proving its ability to distinguish small isotope fractionation among high-temperature samples.
期刊介绍:
The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.