Mohamed U. Zakariya, Conan Bock, R. Kayastha, A. Dall’Asén
{"title":"喇曼光谱法研究激发激光功率对西北非洲6603碳质陨石的热效应","authors":"Mohamed U. Zakariya, Conan Bock, R. Kayastha, A. Dall’Asén","doi":"10.1080/00387010.2023.2193628","DOIUrl":null,"url":null,"abstract":"Abstract Raman spectroscopy has been used extensively on meteoritic samples since it is a nondestructive tool that provides information about their structure and mineralogical composition, which can give important clues about planet formation. However, the power of the excitation laser used in this technique can alter the properties of the samples due to thermal effects. In this undergraduate research work, the laser-induced thermal effects produced on the carbonaceous chondritic meteorite Northwest Africa 6603 were studied in detail by analyzing the low- and high-resolution Raman spectra parameters of the minerals found in the inclusions and matrix of this sample as a function of the excitation power. Olivine (forsterite), graphitic carbon, pyroxene (enstatite), hematite and gehlenite were the minerals identified in the studied regions. The Raman parameters of these minerals were affected by the laser power to a greater or lesser extent, indicating an increase in structural disorder. In general, the alterations observed were permanent (reverse changes were not observed). These thermal effects were correlated with the topography of the irradiated regions by analyzing their changes using optical microscopy. The micrographs of a few regions showed changes on their topography after irradiating the regions with the maximum applied power (e.g., more depressed areas). These findings exhibited strong evidence of the thermal effects induced by the laser power on the materials found in this fragment, which must be considered to avoid alterations of the physical and chemical properties of the meteoritic samples. In addition, this work presents the first study done on the mineralogical composition of Northwest Africa 6603 using Raman spectroscopy. Furthermore, from an educational standpoint, this project exposed the involved undergraduate physics students to numerous research steps (e.g., experiment preparation, data acquisition/analysis, and manuscript preparation) which provided them with a broad spectrum of valuable scientific and technical tools for their future careers.","PeriodicalId":21953,"journal":{"name":"Spectroscopy Letters","volume":"56 1","pages":"183 - 193"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal effects of the excitation laser power on carbonaceous meteorite Northwest Africa 6603 by Raman spectroscopy: an undergraduate research project\",\"authors\":\"Mohamed U. Zakariya, Conan Bock, R. Kayastha, A. Dall’Asén\",\"doi\":\"10.1080/00387010.2023.2193628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Raman spectroscopy has been used extensively on meteoritic samples since it is a nondestructive tool that provides information about their structure and mineralogical composition, which can give important clues about planet formation. However, the power of the excitation laser used in this technique can alter the properties of the samples due to thermal effects. In this undergraduate research work, the laser-induced thermal effects produced on the carbonaceous chondritic meteorite Northwest Africa 6603 were studied in detail by analyzing the low- and high-resolution Raman spectra parameters of the minerals found in the inclusions and matrix of this sample as a function of the excitation power. Olivine (forsterite), graphitic carbon, pyroxene (enstatite), hematite and gehlenite were the minerals identified in the studied regions. The Raman parameters of these minerals were affected by the laser power to a greater or lesser extent, indicating an increase in structural disorder. In general, the alterations observed were permanent (reverse changes were not observed). These thermal effects were correlated with the topography of the irradiated regions by analyzing their changes using optical microscopy. The micrographs of a few regions showed changes on their topography after irradiating the regions with the maximum applied power (e.g., more depressed areas). These findings exhibited strong evidence of the thermal effects induced by the laser power on the materials found in this fragment, which must be considered to avoid alterations of the physical and chemical properties of the meteoritic samples. In addition, this work presents the first study done on the mineralogical composition of Northwest Africa 6603 using Raman spectroscopy. Furthermore, from an educational standpoint, this project exposed the involved undergraduate physics students to numerous research steps (e.g., experiment preparation, data acquisition/analysis, and manuscript preparation) which provided them with a broad spectrum of valuable scientific and technical tools for their future careers.\",\"PeriodicalId\":21953,\"journal\":{\"name\":\"Spectroscopy Letters\",\"volume\":\"56 1\",\"pages\":\"183 - 193\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/00387010.2023.2193628\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/00387010.2023.2193628","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Thermal effects of the excitation laser power on carbonaceous meteorite Northwest Africa 6603 by Raman spectroscopy: an undergraduate research project
Abstract Raman spectroscopy has been used extensively on meteoritic samples since it is a nondestructive tool that provides information about their structure and mineralogical composition, which can give important clues about planet formation. However, the power of the excitation laser used in this technique can alter the properties of the samples due to thermal effects. In this undergraduate research work, the laser-induced thermal effects produced on the carbonaceous chondritic meteorite Northwest Africa 6603 were studied in detail by analyzing the low- and high-resolution Raman spectra parameters of the minerals found in the inclusions and matrix of this sample as a function of the excitation power. Olivine (forsterite), graphitic carbon, pyroxene (enstatite), hematite and gehlenite were the minerals identified in the studied regions. The Raman parameters of these minerals were affected by the laser power to a greater or lesser extent, indicating an increase in structural disorder. In general, the alterations observed were permanent (reverse changes were not observed). These thermal effects were correlated with the topography of the irradiated regions by analyzing their changes using optical microscopy. The micrographs of a few regions showed changes on their topography after irradiating the regions with the maximum applied power (e.g., more depressed areas). These findings exhibited strong evidence of the thermal effects induced by the laser power on the materials found in this fragment, which must be considered to avoid alterations of the physical and chemical properties of the meteoritic samples. In addition, this work presents the first study done on the mineralogical composition of Northwest Africa 6603 using Raman spectroscopy. Furthermore, from an educational standpoint, this project exposed the involved undergraduate physics students to numerous research steps (e.g., experiment preparation, data acquisition/analysis, and manuscript preparation) which provided them with a broad spectrum of valuable scientific and technical tools for their future careers.
期刊介绍:
Spectroscopy Letters provides vital coverage of all types of spectroscopy across all the disciplines where they are used—including novel work in fundamental spectroscopy, applications, diagnostics and instrumentation. The audience is intended to be all practicing spectroscopists across all scientific (and some engineering) disciplines, including: physics, chemistry, biology, instrumentation science, and pharmaceutical science.