Wassel Al-Bodour, Y. Murad, Rana Imam, Yahia Smadi
{"title":"基于基因表达式编程和有限元分析的碳纤维包覆混凝土梁抗剪强度研究","authors":"Wassel Al-Bodour, Y. Murad, Rana Imam, Yahia Smadi","doi":"10.1080/24705314.2021.1971891","DOIUrl":null,"url":null,"abstract":"ABSTRACT Existing analytical and numerical models available in the literature can predict the shear strength of CFRP in RC beams based on the FRP strains and this requires measuring the FRP strain values. This research aims to predict the shear strength of CFRP in RC beams without the need to calculate the strains in FRP. Therefore, Gene Expression Programming (GEP) is used in this research to forecast the contribution of the CFRP to shear strength in the RC beams without the need for calculating the strain of the CFRP. A comparison was later performed amongst the empirical findings of the developed GEP model and other models available in published research. The adequate accuracy and highest predictive ability were noticed for the developed GEP model relative to the models published previously. Strengthened reinforced concrete (RC) beams with epoxy-bonded carbon fiber reinforced polymer (CFRP) sheets at various angles of orientation were examined to investigate their shear behavior. The experimental outcomes of the tested specimens were then applied to build a finite element (FE) model using ABAQUS. The proposed FE model was able to forecast the experimental behavior of the samples examined with sufficient precision.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":"7 1","pages":"15 - 24"},"PeriodicalIF":3.0000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Shear strength investigation of the carbon fiber reinforced polymer-wrapped concrete beams using gene expression programming and finite element analysis\",\"authors\":\"Wassel Al-Bodour, Y. Murad, Rana Imam, Yahia Smadi\",\"doi\":\"10.1080/24705314.2021.1971891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Existing analytical and numerical models available in the literature can predict the shear strength of CFRP in RC beams based on the FRP strains and this requires measuring the FRP strain values. This research aims to predict the shear strength of CFRP in RC beams without the need to calculate the strains in FRP. Therefore, Gene Expression Programming (GEP) is used in this research to forecast the contribution of the CFRP to shear strength in the RC beams without the need for calculating the strain of the CFRP. A comparison was later performed amongst the empirical findings of the developed GEP model and other models available in published research. The adequate accuracy and highest predictive ability were noticed for the developed GEP model relative to the models published previously. Strengthened reinforced concrete (RC) beams with epoxy-bonded carbon fiber reinforced polymer (CFRP) sheets at various angles of orientation were examined to investigate their shear behavior. The experimental outcomes of the tested specimens were then applied to build a finite element (FE) model using ABAQUS. The proposed FE model was able to forecast the experimental behavior of the samples examined with sufficient precision.\",\"PeriodicalId\":43844,\"journal\":{\"name\":\"Journal of Structural Integrity and Maintenance\",\"volume\":\"7 1\",\"pages\":\"15 - 24\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Integrity and Maintenance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705314.2021.1971891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Integrity and Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705314.2021.1971891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Shear strength investigation of the carbon fiber reinforced polymer-wrapped concrete beams using gene expression programming and finite element analysis
ABSTRACT Existing analytical and numerical models available in the literature can predict the shear strength of CFRP in RC beams based on the FRP strains and this requires measuring the FRP strain values. This research aims to predict the shear strength of CFRP in RC beams without the need to calculate the strains in FRP. Therefore, Gene Expression Programming (GEP) is used in this research to forecast the contribution of the CFRP to shear strength in the RC beams without the need for calculating the strain of the CFRP. A comparison was later performed amongst the empirical findings of the developed GEP model and other models available in published research. The adequate accuracy and highest predictive ability were noticed for the developed GEP model relative to the models published previously. Strengthened reinforced concrete (RC) beams with epoxy-bonded carbon fiber reinforced polymer (CFRP) sheets at various angles of orientation were examined to investigate their shear behavior. The experimental outcomes of the tested specimens were then applied to build a finite element (FE) model using ABAQUS. The proposed FE model was able to forecast the experimental behavior of the samples examined with sufficient precision.