{"title":"关于非线性复微分方程的亚纯解","authors":"J.-F. Chen, Y.-Y. Feng","doi":"10.1007/s10476-023-0225-3","DOIUrl":null,"url":null,"abstract":"<div><p>By utilizing Nevanlinna theory of meromorphic functions, we characterize meromorphic solutions of the following nonlinear differential equation of the form </p><div><div><span>$${f^n}{f^\\prime } + P(z,f,{f^\\prime }, \\ldots ,{f^{(t)}}) = {P_1}{e^{{\\alpha _1}z}} + {P_2}{e^{{\\alpha _2}z}} + \\cdots + {P_m}{e^{{\\alpha _m}z}},$$</span></div></div><p> where <i>n</i> ≥ 3, <i>t</i> ≥ 0 and <i>m</i> ≥ 1 are integers, <i>n</i> ≥ <i>m, P</i>(<i>z, f, f′, …, f</i><sup>(<i>t</i>)</sup>) is a differential polynomial in <i>f</i> (<i>z</i>) of degree <i>d</i> ≤ <i>n</i> with small functions of <i>f</i> (<i>z</i>) as its coefficients, and α<sub><i>j</i></sub>, <i>P</i><sub><i>j</i></sub> (<i>j</i> = 1, 2, …, <i>m</i>) are nonzero constants such that ∣α<sub>1</sub>∣ > ∣α<sub>2</sub>∣ > … > ∣α<sub><i>m</i></sub>∣. Also we provide the concrete forms of the solutions of the equation above, and present some examples illustrating the sharpness of our results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0225-3.pdf","citationCount":"0","resultStr":"{\"title\":\"On Meromorphic Solutions of Nonlinear Complex Differential Equations\",\"authors\":\"J.-F. Chen, Y.-Y. Feng\",\"doi\":\"10.1007/s10476-023-0225-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By utilizing Nevanlinna theory of meromorphic functions, we characterize meromorphic solutions of the following nonlinear differential equation of the form </p><div><div><span>$${f^n}{f^\\\\prime } + P(z,f,{f^\\\\prime }, \\\\ldots ,{f^{(t)}}) = {P_1}{e^{{\\\\alpha _1}z}} + {P_2}{e^{{\\\\alpha _2}z}} + \\\\cdots + {P_m}{e^{{\\\\alpha _m}z}},$$</span></div></div><p> where <i>n</i> ≥ 3, <i>t</i> ≥ 0 and <i>m</i> ≥ 1 are integers, <i>n</i> ≥ <i>m, P</i>(<i>z, f, f′, …, f</i><sup>(<i>t</i>)</sup>) is a differential polynomial in <i>f</i> (<i>z</i>) of degree <i>d</i> ≤ <i>n</i> with small functions of <i>f</i> (<i>z</i>) as its coefficients, and α<sub><i>j</i></sub>, <i>P</i><sub><i>j</i></sub> (<i>j</i> = 1, 2, …, <i>m</i>) are nonzero constants such that ∣α<sub>1</sub>∣ > ∣α<sub>2</sub>∣ > … > ∣α<sub><i>m</i></sub>∣. Also we provide the concrete forms of the solutions of the equation above, and present some examples illustrating the sharpness of our results.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0225-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0225-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0225-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Meromorphic Solutions of Nonlinear Complex Differential Equations
By utilizing Nevanlinna theory of meromorphic functions, we characterize meromorphic solutions of the following nonlinear differential equation of the form
where n ≥ 3, t ≥ 0 and m ≥ 1 are integers, n ≥ m, P(z, f, f′, …, f(t)) is a differential polynomial in f (z) of degree d ≤ n with small functions of f (z) as its coefficients, and αj, Pj (j = 1, 2, …, m) are nonzero constants such that ∣α1∣ > ∣α2∣ > … > ∣αm∣. Also we provide the concrete forms of the solutions of the equation above, and present some examples illustrating the sharpness of our results.