Zofia Wr'oblewska, P. Kowalczyk, Lukasz Plociniczak
{"title":"弹簧质量运行模型近似解中不动点的稳定性","authors":"Zofia Wr'oblewska, P. Kowalczyk, Lukasz Plociniczak","doi":"10.21203/RS.3.RS-563354/V1","DOIUrl":null,"url":null,"abstract":"\n We consider a classical spring-mass model of human running which is built upon an inverted elastic pendulum. Based on our previous results concerning asymptotic solutions for large spring constant (or small angle of attack), we construct analytical approximations of solutions in the considered model. The model itself consists of two sets of differential equations - one set describes the motion of the centre of mass of a runner in contact with the ground (support phase), and the second set describes the phase of no contact with the ground (flight phase). By appropriately concatenating asymptotic solutions for the two phases we are able to reduce the dynamics to a one-dimensional apex to apex return map. We find sufficient conditions for this map to have a unique stable fixed point. By numerical continuation of fixed points with respect to energy, we find a transcritical bifurcation in our model system.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Fixed Points in an Approximate Solution of the Spring-mass Running Model\",\"authors\":\"Zofia Wr'oblewska, P. Kowalczyk, Lukasz Plociniczak\",\"doi\":\"10.21203/RS.3.RS-563354/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We consider a classical spring-mass model of human running which is built upon an inverted elastic pendulum. Based on our previous results concerning asymptotic solutions for large spring constant (or small angle of attack), we construct analytical approximations of solutions in the considered model. The model itself consists of two sets of differential equations - one set describes the motion of the centre of mass of a runner in contact with the ground (support phase), and the second set describes the phase of no contact with the ground (flight phase). By appropriately concatenating asymptotic solutions for the two phases we are able to reduce the dynamics to a one-dimensional apex to apex return map. We find sufficient conditions for this map to have a unique stable fixed point. By numerical continuation of fixed points with respect to energy, we find a transcritical bifurcation in our model system.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-563354/V1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-563354/V1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stability of Fixed Points in an Approximate Solution of the Spring-mass Running Model
We consider a classical spring-mass model of human running which is built upon an inverted elastic pendulum. Based on our previous results concerning asymptotic solutions for large spring constant (or small angle of attack), we construct analytical approximations of solutions in the considered model. The model itself consists of two sets of differential equations - one set describes the motion of the centre of mass of a runner in contact with the ground (support phase), and the second set describes the phase of no contact with the ground (flight phase). By appropriately concatenating asymptotic solutions for the two phases we are able to reduce the dynamics to a one-dimensional apex to apex return map. We find sufficient conditions for this map to have a unique stable fixed point. By numerical continuation of fixed points with respect to energy, we find a transcritical bifurcation in our model system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.