Petteri Kauppila, Reijo Kouhia, Juha Ojanperä, Timo Saksala, Timo Sorjonen
{"title":"金属蠕变断裂和蠕变疲劳建模","authors":"Petteri Kauppila, Reijo Kouhia, Juha Ojanperä, Timo Saksala, Timo Sorjonen","doi":"10.23998/RM.64657","DOIUrl":null,"url":null,"abstract":"This article deals with modelling of creep fracture and fatigue of metals. A short description of the physical mechanisms of creep phenomena is given. Developed thermodynamically consistent material model is described in detail. The material parameters are calibrated for the 7CrMoVTiB10-10 steel in the temperature range 500-600 oC. The model is implemented as a user subroutine in the commercial finite element code ANSYS.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":"50 1","pages":"420-450"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallien virumismurron ja virumisväsymisen mallintaminen\",\"authors\":\"Petteri Kauppila, Reijo Kouhia, Juha Ojanperä, Timo Saksala, Timo Sorjonen\",\"doi\":\"10.23998/RM.64657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with modelling of creep fracture and fatigue of metals. A short description of the physical mechanisms of creep phenomena is given. Developed thermodynamically consistent material model is described in detail. The material parameters are calibrated for the 7CrMoVTiB10-10 steel in the temperature range 500-600 oC. The model is implemented as a user subroutine in the commercial finite element code ANSYS.\",\"PeriodicalId\":52331,\"journal\":{\"name\":\"Rakenteiden Mekaniikka\",\"volume\":\"50 1\",\"pages\":\"420-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rakenteiden Mekaniikka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23998/RM.64657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/RM.64657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Metallien virumismurron ja virumisväsymisen mallintaminen
This article deals with modelling of creep fracture and fatigue of metals. A short description of the physical mechanisms of creep phenomena is given. Developed thermodynamically consistent material model is described in detail. The material parameters are calibrated for the 7CrMoVTiB10-10 steel in the temperature range 500-600 oC. The model is implemented as a user subroutine in the commercial finite element code ANSYS.