Farimah Bakhshizadeh, S. Fatholahi, Lucas Prado Osco, J. Marcato Junior, Jonathan Li
{"title":"基于Graz-Lagrangian模型和GIS的交通诱导城市空气污染三维空间建模","authors":"Farimah Bakhshizadeh, S. Fatholahi, Lucas Prado Osco, J. Marcato Junior, Jonathan Li","doi":"10.1139/geomat-2020-0023","DOIUrl":null,"url":null,"abstract":"Air pollution is a significant global problem that affects climate, human, and ecosystem health. Traffic emissions are a major source of atmospheric pollution in large cities. The aim of this research was to support air quality analysis by spatially modelling traffic-induced air pollution dispersion in urban areas at the street level. The dispersion model called the Graz Lagrangian model (GRAL model) was adapted to determine the NOx concentration level based on traffic, meteorology, buildings, and street configuration data in one of Tehran’s high traffic routes. In this case, meteorological parameters such as wind speed and direction were considered significant factors. Later, using local and general auto-correlation analyses, temporal and spatial variations in the concentration of NOx were measured at different altitudes. The results showed that the average output concentration of NOx pollutants at different altitudes ranges from 64.5 to 426.6 ppb. The resulting Moran index equals to 0.7–0.9 which indicates a high level of positive spatial auto-correlation. The analysis of the local Moran index represents the overcame pollution clusters with high levels of concentration at low to medium heights and the rise in clusters with low pollution at higher heights, while there is no clear clustering in the middle sections. In addition, the study of pollutant concentration variations over time has shown that pollution peaks occur at 07:00–08:00 and 21:00–22:00.","PeriodicalId":35938,"journal":{"name":"Geomatica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional spatial modelling of traffic-induced urban air pollution using the Graz Lagrangian model and GIS\",\"authors\":\"Farimah Bakhshizadeh, S. Fatholahi, Lucas Prado Osco, J. Marcato Junior, Jonathan Li\",\"doi\":\"10.1139/geomat-2020-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution is a significant global problem that affects climate, human, and ecosystem health. Traffic emissions are a major source of atmospheric pollution in large cities. The aim of this research was to support air quality analysis by spatially modelling traffic-induced air pollution dispersion in urban areas at the street level. The dispersion model called the Graz Lagrangian model (GRAL model) was adapted to determine the NOx concentration level based on traffic, meteorology, buildings, and street configuration data in one of Tehran’s high traffic routes. In this case, meteorological parameters such as wind speed and direction were considered significant factors. Later, using local and general auto-correlation analyses, temporal and spatial variations in the concentration of NOx were measured at different altitudes. The results showed that the average output concentration of NOx pollutants at different altitudes ranges from 64.5 to 426.6 ppb. The resulting Moran index equals to 0.7–0.9 which indicates a high level of positive spatial auto-correlation. The analysis of the local Moran index represents the overcame pollution clusters with high levels of concentration at low to medium heights and the rise in clusters with low pollution at higher heights, while there is no clear clustering in the middle sections. In addition, the study of pollutant concentration variations over time has shown that pollution peaks occur at 07:00–08:00 and 21:00–22:00.\",\"PeriodicalId\":35938,\"journal\":{\"name\":\"Geomatica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/geomat-2020-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/geomat-2020-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Three-dimensional spatial modelling of traffic-induced urban air pollution using the Graz Lagrangian model and GIS
Air pollution is a significant global problem that affects climate, human, and ecosystem health. Traffic emissions are a major source of atmospheric pollution in large cities. The aim of this research was to support air quality analysis by spatially modelling traffic-induced air pollution dispersion in urban areas at the street level. The dispersion model called the Graz Lagrangian model (GRAL model) was adapted to determine the NOx concentration level based on traffic, meteorology, buildings, and street configuration data in one of Tehran’s high traffic routes. In this case, meteorological parameters such as wind speed and direction were considered significant factors. Later, using local and general auto-correlation analyses, temporal and spatial variations in the concentration of NOx were measured at different altitudes. The results showed that the average output concentration of NOx pollutants at different altitudes ranges from 64.5 to 426.6 ppb. The resulting Moran index equals to 0.7–0.9 which indicates a high level of positive spatial auto-correlation. The analysis of the local Moran index represents the overcame pollution clusters with high levels of concentration at low to medium heights and the rise in clusters with low pollution at higher heights, while there is no clear clustering in the middle sections. In addition, the study of pollutant concentration variations over time has shown that pollution peaks occur at 07:00–08:00 and 21:00–22:00.
GeomaticaSocial Sciences-Geography, Planning and Development
CiteScore
1.50
自引率
0.00%
发文量
7
期刊介绍:
Geomatica (formerly CISM Journal ACSGC), is the official quarterly publication of the Canadian Institute of Geomatics. It is the oldest surveying and mapping publication in Canada and was first published in 1922 as the Journal of the Dominion Land Surveyors’ Association. Geomatica is dedicated to the dissemination of information on technical advances in the geomatics sciences. The internationally respected publication contains special features, notices of conferences, calendar of event, articles on personalities, review of current books, industry news and new products, all of which keep the publication lively and informative.