Sethuramachandran Thanikaikarasan, R. Perumal, R. Kanimozhi, M. Saravannan, P. S. Suja Ponmini
{"title":"透明导电衬底对电化学生长CdSe和CdSe: Fe薄膜物理、化学和光学性能的影响","authors":"Sethuramachandran Thanikaikarasan, R. Perumal, R. Kanimozhi, M. Saravannan, P. S. Suja Ponmini","doi":"10.14447/jnmes.v25i2.a03","DOIUrl":null,"url":null,"abstract":"Semiconductors of II–VI group considered as interesting candidate for many researchers owing to its wide variety of applications in industries such as solar cells, solar selective coatings and optoelectronic devices. Chalcogenides of Cadmium received much attention due to its important structural feature, film composition, electronic and optical properties. The technique of low cost, low temperature electrochemical deposition has been employed to prepare Cadmium Selenide and Iron incorporated Cadmium Selenide thin films on transparent nature conducting substrates. The technique of X-ray diffraction has been used to identify crystalline nature and structural features of the deposited films. The method of Energy dispersive X-ray analysis has been used to find out the stoichiometric nature of the deposited films. The parameters viz., crystallite size, strain, dislocation density are estimated for the deposited films. The method of Ultraviolet-Visible spectroscopic measurements has been carried out to determine the optical properties of the deposited films. The deposited films found to exhibit band gap value in the range between 1.67 and 1.74 eV and the value of optical parameters refractive index and extinction coefficient, were estimated.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Transparent Nature Conducting Substrate on Physical, Chemical and Optical Properties of Electrochemically Grown CdSe and CdSe: Fe Thin Films\",\"authors\":\"Sethuramachandran Thanikaikarasan, R. Perumal, R. Kanimozhi, M. Saravannan, P. S. Suja Ponmini\",\"doi\":\"10.14447/jnmes.v25i2.a03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductors of II–VI group considered as interesting candidate for many researchers owing to its wide variety of applications in industries such as solar cells, solar selective coatings and optoelectronic devices. Chalcogenides of Cadmium received much attention due to its important structural feature, film composition, electronic and optical properties. The technique of low cost, low temperature electrochemical deposition has been employed to prepare Cadmium Selenide and Iron incorporated Cadmium Selenide thin films on transparent nature conducting substrates. The technique of X-ray diffraction has been used to identify crystalline nature and structural features of the deposited films. The method of Energy dispersive X-ray analysis has been used to find out the stoichiometric nature of the deposited films. The parameters viz., crystallite size, strain, dislocation density are estimated for the deposited films. The method of Ultraviolet-Visible spectroscopic measurements has been carried out to determine the optical properties of the deposited films. The deposited films found to exhibit band gap value in the range between 1.67 and 1.74 eV and the value of optical parameters refractive index and extinction coefficient, were estimated.\",\"PeriodicalId\":16447,\"journal\":{\"name\":\"Journal of New Materials For Electrochemical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Materials For Electrochemical Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14447/jnmes.v25i2.a03\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v25i2.a03","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Role of Transparent Nature Conducting Substrate on Physical, Chemical and Optical Properties of Electrochemically Grown CdSe and CdSe: Fe Thin Films
Semiconductors of II–VI group considered as interesting candidate for many researchers owing to its wide variety of applications in industries such as solar cells, solar selective coatings and optoelectronic devices. Chalcogenides of Cadmium received much attention due to its important structural feature, film composition, electronic and optical properties. The technique of low cost, low temperature electrochemical deposition has been employed to prepare Cadmium Selenide and Iron incorporated Cadmium Selenide thin films on transparent nature conducting substrates. The technique of X-ray diffraction has been used to identify crystalline nature and structural features of the deposited films. The method of Energy dispersive X-ray analysis has been used to find out the stoichiometric nature of the deposited films. The parameters viz., crystallite size, strain, dislocation density are estimated for the deposited films. The method of Ultraviolet-Visible spectroscopic measurements has been carried out to determine the optical properties of the deposited films. The deposited films found to exhibit band gap value in the range between 1.67 and 1.74 eV and the value of optical parameters refractive index and extinction coefficient, were estimated.
期刊介绍:
This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.