{"title":"太阳扇形脊结构中日冕磁场的无线电测量","authors":"B. Ryabov, A. Vrublevskis","doi":"10.2478/lpts-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract Recent interest of solar physicists in the analysis of the coronal mass ejections and circular solar flares in fan-spine magnetic configurations (FSCs) necessitates measurements of the corresponding coronal magnetic fields. A dominant sunspot with the circumjacent magnetic flux of opposite polarity produces a specific coronal region of the quasi-transverse (QT-) propagation of microwaves. We make use of the theory of QT-propagation to evaluate the strengths of coronal magnetic fields in the active regions NOAA 11579, 12242, and 12488 while they are non-flaring. Microwave polarization changes were observed with the RATAN-600 radio telescope, the Siberian Solar Radio Telescope, and the Nobeyama Radioheliograph. Changes in the sign of circular radio polarization provide the strengths of coronal fields in a QT-region if the coronal plasma density Ne and the length scale of magnetic field divergence Ld are known. We evaluate the length scale by means of the potential-field source-surface (PFSS) model and the coronal density from the Gaussian inversion of the differential emission measure (from the Solar Dynamics Observatory observational data), obtaining Ne Ld = (0.46–0.64)×1010 m−2. The resulting coronal fields of 1.4×10−3 T and 2.34×10−3 T are attributed to the heights of 100 Mm and 50.2 Mm. We discuss the validity and consistency of the involved values to draw conclusions on the feasibility of coronal radio magnetography of FSCs.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"60 1","pages":"52 - 62"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio Measurements of Coronal Magnetic Fields in Fan-Spine Configurations on the Sun\",\"authors\":\"B. Ryabov, A. Vrublevskis\",\"doi\":\"10.2478/lpts-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent interest of solar physicists in the analysis of the coronal mass ejections and circular solar flares in fan-spine magnetic configurations (FSCs) necessitates measurements of the corresponding coronal magnetic fields. A dominant sunspot with the circumjacent magnetic flux of opposite polarity produces a specific coronal region of the quasi-transverse (QT-) propagation of microwaves. We make use of the theory of QT-propagation to evaluate the strengths of coronal magnetic fields in the active regions NOAA 11579, 12242, and 12488 while they are non-flaring. Microwave polarization changes were observed with the RATAN-600 radio telescope, the Siberian Solar Radio Telescope, and the Nobeyama Radioheliograph. Changes in the sign of circular radio polarization provide the strengths of coronal fields in a QT-region if the coronal plasma density Ne and the length scale of magnetic field divergence Ld are known. We evaluate the length scale by means of the potential-field source-surface (PFSS) model and the coronal density from the Gaussian inversion of the differential emission measure (from the Solar Dynamics Observatory observational data), obtaining Ne Ld = (0.46–0.64)×1010 m−2. The resulting coronal fields of 1.4×10−3 T and 2.34×10−3 T are attributed to the heights of 100 Mm and 50.2 Mm. We discuss the validity and consistency of the involved values to draw conclusions on the feasibility of coronal radio magnetography of FSCs.\",\"PeriodicalId\":43603,\"journal\":{\"name\":\"Latvian Journal of Physics and Technical Sciences\",\"volume\":\"60 1\",\"pages\":\"52 - 62\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latvian Journal of Physics and Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/lpts-2023-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2023-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Radio Measurements of Coronal Magnetic Fields in Fan-Spine Configurations on the Sun
Abstract Recent interest of solar physicists in the analysis of the coronal mass ejections and circular solar flares in fan-spine magnetic configurations (FSCs) necessitates measurements of the corresponding coronal magnetic fields. A dominant sunspot with the circumjacent magnetic flux of opposite polarity produces a specific coronal region of the quasi-transverse (QT-) propagation of microwaves. We make use of the theory of QT-propagation to evaluate the strengths of coronal magnetic fields in the active regions NOAA 11579, 12242, and 12488 while they are non-flaring. Microwave polarization changes were observed with the RATAN-600 radio telescope, the Siberian Solar Radio Telescope, and the Nobeyama Radioheliograph. Changes in the sign of circular radio polarization provide the strengths of coronal fields in a QT-region if the coronal plasma density Ne and the length scale of magnetic field divergence Ld are known. We evaluate the length scale by means of the potential-field source-surface (PFSS) model and the coronal density from the Gaussian inversion of the differential emission measure (from the Solar Dynamics Observatory observational data), obtaining Ne Ld = (0.46–0.64)×1010 m−2. The resulting coronal fields of 1.4×10−3 T and 2.34×10−3 T are attributed to the heights of 100 Mm and 50.2 Mm. We discuss the validity and consistency of the involved values to draw conclusions on the feasibility of coronal radio magnetography of FSCs.
期刊介绍:
Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.