改进的基于深度卷积神经网络的有创杂草社交滑雪驱动程序优化用于糖尿病视网膜病变分类

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-08-03 DOI:10.1142/s0219467825500123
Padmanayana Bhat, B. Anoop
{"title":"改进的基于深度卷积神经网络的有创杂草社交滑雪驱动程序优化用于糖尿病视网膜病变分类","authors":"Padmanayana Bhat, B. Anoop","doi":"10.1142/s0219467825500123","DOIUrl":null,"url":null,"abstract":"The eye-related problem of diabetes is called diabetic retinopathy (DR), which is the main factor contributing to visual loss. This research develops an enhanced deep model for DR classification. Here, deep convolutional neural network (Deep CNN) is trained with the improved invasive weed social ski-driver optimization (IISSDO), which is generated by fusing improved invasive weed optimization (IIWO) and social ski-driver (SSD). The IISSDO-based Deep CNN classifies DR severity into normal, mild, non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative. Initially, a type 2 fuzzy and cuckoo search (T2FCS) filter performs pre-processing and the quality of the data is improved by data augmentation. The lesion is then divided using DeepJoint segmentation. Then, the Deep CNN determines the DR. The analysis uses the Indian DR image database. The IISSDO-based Deep CNN has the highest accuracy, sensitivity, and specificity of 96.566%, 96.773%, and 96.517%, respectively.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Invasive Weed Social Ski-Driver Optimization-Based Deep Convolution Neural Network for Diabetic Retinopathy Classification\",\"authors\":\"Padmanayana Bhat, B. Anoop\",\"doi\":\"10.1142/s0219467825500123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The eye-related problem of diabetes is called diabetic retinopathy (DR), which is the main factor contributing to visual loss. This research develops an enhanced deep model for DR classification. Here, deep convolutional neural network (Deep CNN) is trained with the improved invasive weed social ski-driver optimization (IISSDO), which is generated by fusing improved invasive weed optimization (IIWO) and social ski-driver (SSD). The IISSDO-based Deep CNN classifies DR severity into normal, mild, non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative. Initially, a type 2 fuzzy and cuckoo search (T2FCS) filter performs pre-processing and the quality of the data is improved by data augmentation. The lesion is then divided using DeepJoint segmentation. Then, the Deep CNN determines the DR. The analysis uses the Indian DR image database. The IISSDO-based Deep CNN has the highest accuracy, sensitivity, and specificity of 96.566%, 96.773%, and 96.517%, respectively.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467825500123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病的眼睛相关问题被称为糖尿病视网膜病变(DR),这是导致视力丧失的主要因素。本研究开发了一种用于DR分类的增强深度模型。在这里,深度卷积神经网络(deep CNN)使用改进的入侵杂草社交滑雪驱动程序优化(IISSDO)进行训练,该优化是通过融合改进的入侵除草优化(IIWO)和社交滑雪驱动(SSD)生成的。基于IISSDO的Deep CNN将DR的严重程度分为正常、轻度、非增殖性DR(NPDR)、中度NPDR、重度NPDR和增殖性。最初,2型模糊杜鹃搜索(T2FCS)滤波器进行预处理,并通过数据扩充来提高数据的质量。然后使用DeepJoint分割对病变进行分割。然后,深度CNN确定DR。分析使用印度DR图像数据库。基于IISSDO的深度CNN具有最高的准确性、敏感性和特异性,分别为96.566%、96.773%和96.517%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Invasive Weed Social Ski-Driver Optimization-Based Deep Convolution Neural Network for Diabetic Retinopathy Classification
The eye-related problem of diabetes is called diabetic retinopathy (DR), which is the main factor contributing to visual loss. This research develops an enhanced deep model for DR classification. Here, deep convolutional neural network (Deep CNN) is trained with the improved invasive weed social ski-driver optimization (IISSDO), which is generated by fusing improved invasive weed optimization (IIWO) and social ski-driver (SSD). The IISSDO-based Deep CNN classifies DR severity into normal, mild, non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative. Initially, a type 2 fuzzy and cuckoo search (T2FCS) filter performs pre-processing and the quality of the data is improved by data augmentation. The lesion is then divided using DeepJoint segmentation. Then, the Deep CNN determines the DR. The analysis uses the Indian DR image database. The IISSDO-based Deep CNN has the highest accuracy, sensitivity, and specificity of 96.566%, 96.773%, and 96.517%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Modified Whale Algorithm and Morley PSO-ML-Based Hyperparameter Optimization for Intrusion Detection A Novel Hybrid Attention-Based Dilated Network for Depression Classification Model from Multimodal Data Using Improved Heuristic Approach An Extensive Review on Lung Cancer Detection Models CMVT: ConVit Transformer Network Recombined with Convolutional Layer Two-Phase Speckle Noise Removal in US Images: Speckle Reducing Improved Anisotropic Diffusion and Optimal Bayes Threshold
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1