{"title":"改进的基于深度卷积神经网络的有创杂草社交滑雪驱动程序优化用于糖尿病视网膜病变分类","authors":"Padmanayana Bhat, B. Anoop","doi":"10.1142/s0219467825500123","DOIUrl":null,"url":null,"abstract":"The eye-related problem of diabetes is called diabetic retinopathy (DR), which is the main factor contributing to visual loss. This research develops an enhanced deep model for DR classification. Here, deep convolutional neural network (Deep CNN) is trained with the improved invasive weed social ski-driver optimization (IISSDO), which is generated by fusing improved invasive weed optimization (IIWO) and social ski-driver (SSD). The IISSDO-based Deep CNN classifies DR severity into normal, mild, non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative. Initially, a type 2 fuzzy and cuckoo search (T2FCS) filter performs pre-processing and the quality of the data is improved by data augmentation. The lesion is then divided using DeepJoint segmentation. Then, the Deep CNN determines the DR. The analysis uses the Indian DR image database. The IISSDO-based Deep CNN has the highest accuracy, sensitivity, and specificity of 96.566%, 96.773%, and 96.517%, respectively.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Invasive Weed Social Ski-Driver Optimization-Based Deep Convolution Neural Network for Diabetic Retinopathy Classification\",\"authors\":\"Padmanayana Bhat, B. Anoop\",\"doi\":\"10.1142/s0219467825500123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The eye-related problem of diabetes is called diabetic retinopathy (DR), which is the main factor contributing to visual loss. This research develops an enhanced deep model for DR classification. Here, deep convolutional neural network (Deep CNN) is trained with the improved invasive weed social ski-driver optimization (IISSDO), which is generated by fusing improved invasive weed optimization (IIWO) and social ski-driver (SSD). The IISSDO-based Deep CNN classifies DR severity into normal, mild, non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative. Initially, a type 2 fuzzy and cuckoo search (T2FCS) filter performs pre-processing and the quality of the data is improved by data augmentation. The lesion is then divided using DeepJoint segmentation. Then, the Deep CNN determines the DR. The analysis uses the Indian DR image database. The IISSDO-based Deep CNN has the highest accuracy, sensitivity, and specificity of 96.566%, 96.773%, and 96.517%, respectively.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467825500123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Improved Invasive Weed Social Ski-Driver Optimization-Based Deep Convolution Neural Network for Diabetic Retinopathy Classification
The eye-related problem of diabetes is called diabetic retinopathy (DR), which is the main factor contributing to visual loss. This research develops an enhanced deep model for DR classification. Here, deep convolutional neural network (Deep CNN) is trained with the improved invasive weed social ski-driver optimization (IISSDO), which is generated by fusing improved invasive weed optimization (IIWO) and social ski-driver (SSD). The IISSDO-based Deep CNN classifies DR severity into normal, mild, non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative. Initially, a type 2 fuzzy and cuckoo search (T2FCS) filter performs pre-processing and the quality of the data is improved by data augmentation. The lesion is then divided using DeepJoint segmentation. Then, the Deep CNN determines the DR. The analysis uses the Indian DR image database. The IISSDO-based Deep CNN has the highest accuracy, sensitivity, and specificity of 96.566%, 96.773%, and 96.517%, respectively.