活化剂对VT6铬钛合金组织与性能的影响

T. Loskutova, I. Pogrebova, Ya.А. Kononenko, S. Kotlyar
{"title":"活化剂对VT6铬钛合金组织与性能的影响","authors":"T. Loskutova, I. Pogrebova, Ya.А. Kononenko, S. Kotlyar","doi":"10.15407/mom2022.02.052","DOIUrl":null,"url":null,"abstract":"The influence of the amount of halogen-containing activator on the structure, composition and properties of diffusion layers, which are formed during the complex saturation of the titanium alloy VT6 with chromium and aluminum, is investigated. The coating was applied by powder method in chlorine under reduced pressure, at a temperature of 850 ° C for 4 hours in a saturating mixture consisting of powders of saturating metals (chromium, aluminum), inert backfill Al2O3 and activator. As the activator used NH4Cl, the amount of which varied in the range from 3 to 9 % of the mass. The optimal amount of activator in the saturating mixture is determined. The microstructure, chemical composition, thickness and microhardness of the obtained diffusion coatings were studied. It was found that when using 3% NH4Cl, the obtained coatings consist of three layers, dark gray, which are completely located on the surface and correspond to the phases based on TiAl, intermetallic with (Ti, V, Cr, Al) and Ti3Al. A transition zone based on α-Ti is formed directly under the coating. The microhardness of the obtained layers is quite high and is 5.1-9.6 GPa, the total thickness is 46.0-48.0 μm. Reducing the amount of activator leads to the formation of discontinuous surface layers of the coating, which will lead to differences in the properties of its surface layers. Increase - to the destruction of the surface layers of the coating and equipment directly during the chemical-thermal treatment. Keywords: chromium, aluminum, titanium alloy, activator, diffusion coatings.","PeriodicalId":33600,"journal":{"name":"Metaloznavstvo ta obrobka metaliv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of activator on the structure and properties of chromium-alloyed titanium alloy VT6\",\"authors\":\"T. Loskutova, I. Pogrebova, Ya.А. Kononenko, S. Kotlyar\",\"doi\":\"10.15407/mom2022.02.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of the amount of halogen-containing activator on the structure, composition and properties of diffusion layers, which are formed during the complex saturation of the titanium alloy VT6 with chromium and aluminum, is investigated. The coating was applied by powder method in chlorine under reduced pressure, at a temperature of 850 ° C for 4 hours in a saturating mixture consisting of powders of saturating metals (chromium, aluminum), inert backfill Al2O3 and activator. As the activator used NH4Cl, the amount of which varied in the range from 3 to 9 % of the mass. The optimal amount of activator in the saturating mixture is determined. The microstructure, chemical composition, thickness and microhardness of the obtained diffusion coatings were studied. It was found that when using 3% NH4Cl, the obtained coatings consist of three layers, dark gray, which are completely located on the surface and correspond to the phases based on TiAl, intermetallic with (Ti, V, Cr, Al) and Ti3Al. A transition zone based on α-Ti is formed directly under the coating. The microhardness of the obtained layers is quite high and is 5.1-9.6 GPa, the total thickness is 46.0-48.0 μm. Reducing the amount of activator leads to the formation of discontinuous surface layers of the coating, which will lead to differences in the properties of its surface layers. Increase - to the destruction of the surface layers of the coating and equipment directly during the chemical-thermal treatment. Keywords: chromium, aluminum, titanium alloy, activator, diffusion coatings.\",\"PeriodicalId\":33600,\"journal\":{\"name\":\"Metaloznavstvo ta obrobka metaliv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metaloznavstvo ta obrobka metaliv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/mom2022.02.052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaloznavstvo ta obrobka metaliv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/mom2022.02.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了含卤素活化剂的用量对钛合金VT6与铬和铝复合饱和过程中形成的扩散层的结构、组成和性能的影响。涂层通过粉末法在氯中减压、850°C温度下在饱和混合物中涂覆4小时,该饱和混合物由饱和金属(铬、铝)、惰性回填Al2O3和活化剂的粉末组成。作为活化剂,使用NH4Cl,其量在质量的3%至9%范围内变化。确定了饱和混合物中活化剂的最佳量。对所得扩散涂层的微观结构、化学成分、厚度和显微硬度进行了研究。研究发现,当使用3%NH4Cl时,获得的涂层由三层深灰色组成,它们完全位于表面上,对应于基于TiAl的相、与(Ti,V,Cr,Al)和Ti3Al的金属间相。在涂层的正下方形成了一个基于α-Ti的过渡区。所获得的层的显微硬度相当高,为5.1-9.6GPa,总厚度为46.0-48.0μm。减少活化剂的量会导致涂层表面层不连续,这将导致其表面层性能的差异。增加-在化学热处理过程中直接破坏涂层和设备的表面层。关键词:铬,铝,钛合金,活化剂,扩散涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of activator on the structure and properties of chromium-alloyed titanium alloy VT6
The influence of the amount of halogen-containing activator on the structure, composition and properties of diffusion layers, which are formed during the complex saturation of the titanium alloy VT6 with chromium and aluminum, is investigated. The coating was applied by powder method in chlorine under reduced pressure, at a temperature of 850 ° C for 4 hours in a saturating mixture consisting of powders of saturating metals (chromium, aluminum), inert backfill Al2O3 and activator. As the activator used NH4Cl, the amount of which varied in the range from 3 to 9 % of the mass. The optimal amount of activator in the saturating mixture is determined. The microstructure, chemical composition, thickness and microhardness of the obtained diffusion coatings were studied. It was found that when using 3% NH4Cl, the obtained coatings consist of three layers, dark gray, which are completely located on the surface and correspond to the phases based on TiAl, intermetallic with (Ti, V, Cr, Al) and Ti3Al. A transition zone based on α-Ti is formed directly under the coating. The microhardness of the obtained layers is quite high and is 5.1-9.6 GPa, the total thickness is 46.0-48.0 μm. Reducing the amount of activator leads to the formation of discontinuous surface layers of the coating, which will lead to differences in the properties of its surface layers. Increase - to the destruction of the surface layers of the coating and equipment directly during the chemical-thermal treatment. Keywords: chromium, aluminum, titanium alloy, activator, diffusion coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
8 weeks
期刊最新文献
Environmental aspects of foundry aluminum slag processing Complex modification of AlSi9Cu3(Fe) alloy by using cobalt, vanadium and molybdenum Trends in the global market of iron and iron castings in the first quarter of the 21st century Determination of the dispersion hardening ability of a new die steel with controlled austenitic transformation Prediction of the mechanical properties of gray cast iron (probabilistic approach)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1