基于一维常规神经网络的心律失常分类

Sarah Kamil, L. Muhammed
{"title":"基于一维常规神经网络的心律失常分类","authors":"Sarah Kamil, L. Muhammed","doi":"10.15849/ijasca.211128.04","DOIUrl":null,"url":null,"abstract":"Arrhythmia is a heart condition that occurs due to abnormalities in the heartbeat, which means that the heart's electrical signals do not work properly, resulting in an irregular heartbeat or rhythm and thus defeating the pumping of blood. Some cases of arrhythmia are not considered serious, while others are very dangerous, life-threatening, and cause death in a short period of time. In the clinical routine, cardiac arrhythmia detection is performed by electrocardiogram (ECG) signals. The ECG is a significant diagnosis tool that is used to record the electrical activity of the heart, and its signals can reveal abnormal heart activity. However, because of their small amplitude and duration, visual interpretation of ECG signals is difficult. As a result, we present a significant approach for identifying arrhythmias using ECG signals. In this study, we proposed an approach based on Deep Learning (DL) technology that is a framework of nine-layer one-dimension Conventional Neural Network (1D CNN) for classifying automatically ECG signals into four cardiac conditions named: normal (N), Atrial Premature Beat (APB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The practical test of this work was executed with the benchmark MIT-BIH database. We achieved an average accuracy of 99%, precision of 98%, recall of 96.5%, specificity of 99.08%, and an F1-score of 95.75%. The obtained results were compared with some relevant models, and they showed that the proposed framework outperformed those models in some measures. The new approach’s performance indicates its success. Also, it has been shown that deep convolutional neural networks can be used efficiently in automated detection and, therefore, cardiovascular disease protection as well as help cardiologists in medical practice by saving time and effort. Keywords: 1-D CNN, Arrhythmia, Cardiovascular Disease, Classification, Deep learning, Electrocardiogram(ECG), MIT-BIH arrhythmia database.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arrhythmia Classification Using One Dimensional Conventional Neural Network\",\"authors\":\"Sarah Kamil, L. Muhammed\",\"doi\":\"10.15849/ijasca.211128.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arrhythmia is a heart condition that occurs due to abnormalities in the heartbeat, which means that the heart's electrical signals do not work properly, resulting in an irregular heartbeat or rhythm and thus defeating the pumping of blood. Some cases of arrhythmia are not considered serious, while others are very dangerous, life-threatening, and cause death in a short period of time. In the clinical routine, cardiac arrhythmia detection is performed by electrocardiogram (ECG) signals. The ECG is a significant diagnosis tool that is used to record the electrical activity of the heart, and its signals can reveal abnormal heart activity. However, because of their small amplitude and duration, visual interpretation of ECG signals is difficult. As a result, we present a significant approach for identifying arrhythmias using ECG signals. In this study, we proposed an approach based on Deep Learning (DL) technology that is a framework of nine-layer one-dimension Conventional Neural Network (1D CNN) for classifying automatically ECG signals into four cardiac conditions named: normal (N), Atrial Premature Beat (APB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The practical test of this work was executed with the benchmark MIT-BIH database. We achieved an average accuracy of 99%, precision of 98%, recall of 96.5%, specificity of 99.08%, and an F1-score of 95.75%. The obtained results were compared with some relevant models, and they showed that the proposed framework outperformed those models in some measures. The new approach’s performance indicates its success. Also, it has been shown that deep convolutional neural networks can be used efficiently in automated detection and, therefore, cardiovascular disease protection as well as help cardiologists in medical practice by saving time and effort. Keywords: 1-D CNN, Arrhythmia, Cardiovascular Disease, Classification, Deep learning, Electrocardiogram(ECG), MIT-BIH arrhythmia database.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.211128.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.211128.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

心律失常是一种由心跳异常引起的心脏疾病,这意味着心脏的电信号不能正常工作,导致心跳或节奏不规则,从而阻碍了血液的输送。有些心律失常不被认为是严重的,而另一些则非常危险,危及生命,并在短时间内导致死亡。在临床常规中,心律失常的检测是通过心电图(ECG)信号进行的。心电图是记录心脏电活动的一种重要的诊断工具,它的信号可以揭示心脏的异常活动。然而,由于其幅度小、持续时间短,对心电信号的视觉解释是困难的。因此,我们提出了一种使用ECG信号识别心律失常的重要方法。在这项研究中,我们提出了一种基于深度学习(DL)技术的方法,该方法是一个九层一维传统神经网络(1D CNN)框架,用于将ECG信号自动分类为四种心脏状态:正常(N)、心房早搏(APB)、左束支传导阻滞(LBBB)和右束支传导阻滞(RBBB)。这项工作的实际测试是使用基准的MIT-BIH数据库执行的。平均准确率为99%,精密度为98%,召回率为96.5%,特异性为99.08%,f1评分为95.75%。将得到的结果与一些相关模型进行了比较,结果表明该框架在某些指标上优于那些模型。新方法的表现表明它是成功的。此外,研究表明,深度卷积神经网络可以有效地用于自动检测,从而保护心血管疾病,并通过节省时间和精力帮助心脏病专家在医疗实践中。关键词:1-D CNN,心律失常,心血管疾病,分类,深度学习,心电图,MIT-BIH心律失常数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arrhythmia Classification Using One Dimensional Conventional Neural Network
Arrhythmia is a heart condition that occurs due to abnormalities in the heartbeat, which means that the heart's electrical signals do not work properly, resulting in an irregular heartbeat or rhythm and thus defeating the pumping of blood. Some cases of arrhythmia are not considered serious, while others are very dangerous, life-threatening, and cause death in a short period of time. In the clinical routine, cardiac arrhythmia detection is performed by electrocardiogram (ECG) signals. The ECG is a significant diagnosis tool that is used to record the electrical activity of the heart, and its signals can reveal abnormal heart activity. However, because of their small amplitude and duration, visual interpretation of ECG signals is difficult. As a result, we present a significant approach for identifying arrhythmias using ECG signals. In this study, we proposed an approach based on Deep Learning (DL) technology that is a framework of nine-layer one-dimension Conventional Neural Network (1D CNN) for classifying automatically ECG signals into four cardiac conditions named: normal (N), Atrial Premature Beat (APB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The practical test of this work was executed with the benchmark MIT-BIH database. We achieved an average accuracy of 99%, precision of 98%, recall of 96.5%, specificity of 99.08%, and an F1-score of 95.75%. The obtained results were compared with some relevant models, and they showed that the proposed framework outperformed those models in some measures. The new approach’s performance indicates its success. Also, it has been shown that deep convolutional neural networks can be used efficiently in automated detection and, therefore, cardiovascular disease protection as well as help cardiologists in medical practice by saving time and effort. Keywords: 1-D CNN, Arrhythmia, Cardiovascular Disease, Classification, Deep learning, Electrocardiogram(ECG), MIT-BIH arrhythmia database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advances in Soft Computing and its Applications
International Journal of Advances in Soft Computing and its Applications Computer Science-Computer Science Applications
CiteScore
3.30
自引率
0.00%
发文量
31
期刊介绍: The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.
期刊最新文献
Insider Threat Prevention in the US Banking System Cybersecurity Strategies for Safeguarding Customer’s Data and Preventing Financial Fraud in the United States Financial Sectors Multilevel Thresholding Image Segmentation Based-Logarithm Decreasing Inertia Weight Particle Swarm Optimization Improvement on I-Devices Using L-GCNN Classifier for Smart Mosque Simulation Supervised Learning Algorithms for Predicting Customer Churn with Hyperparameter Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1