{"title":"基于车辆到基础设施环境中深度强化学习的无信号交叉口互联自动化车辆控制","authors":"Juan Chen, V. Sugumaran, P. Qu","doi":"10.1177/15501329221114060","DOIUrl":null,"url":null,"abstract":"In order to reduce the number of vehicle collisions and average travel time when vehicles pass through an unsignalized intersection with connected and automated vehicle, an improved Double Dueling Deep Q Network method with Convolutional Neutral Network and Long Short-Term Memory is presented in this article. This method designs a multi-step reward and penalty method to alleviate the sparse reward problem using positive and negative reward experience replay buffer. The proposed method is validated in a simulation environment with different traffic flow and market penetration under the mixed traffic conditions of automated vehicles and human-driving vehicles. The results show that compared with traditional signal control methods, the proposed method can effectively improve the convergence and stability of the algorithm, reduce the number of collisions, and reduce the average travel time under different traffic conditions.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connected and automated vehicle control at unsignalized intersection based on deep reinforcement learning in vehicle-to-infrastructure environment\",\"authors\":\"Juan Chen, V. Sugumaran, P. Qu\",\"doi\":\"10.1177/15501329221114060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce the number of vehicle collisions and average travel time when vehicles pass through an unsignalized intersection with connected and automated vehicle, an improved Double Dueling Deep Q Network method with Convolutional Neutral Network and Long Short-Term Memory is presented in this article. This method designs a multi-step reward and penalty method to alleviate the sparse reward problem using positive and negative reward experience replay buffer. The proposed method is validated in a simulation environment with different traffic flow and market penetration under the mixed traffic conditions of automated vehicles and human-driving vehicles. The results show that compared with traditional signal control methods, the proposed method can effectively improve the convergence and stability of the algorithm, reduce the number of collisions, and reduce the average travel time under different traffic conditions.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221114060\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221114060","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Connected and automated vehicle control at unsignalized intersection based on deep reinforcement learning in vehicle-to-infrastructure environment
In order to reduce the number of vehicle collisions and average travel time when vehicles pass through an unsignalized intersection with connected and automated vehicle, an improved Double Dueling Deep Q Network method with Convolutional Neutral Network and Long Short-Term Memory is presented in this article. This method designs a multi-step reward and penalty method to alleviate the sparse reward problem using positive and negative reward experience replay buffer. The proposed method is validated in a simulation environment with different traffic flow and market penetration under the mixed traffic conditions of automated vehicles and human-driving vehicles. The results show that compared with traditional signal control methods, the proposed method can effectively improve the convergence and stability of the algorithm, reduce the number of collisions, and reduce the average travel time under different traffic conditions.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.