复杂网络中的社区检测:从统计基础到数据科学应用

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2021-06-03 DOI:10.1002/wics.1566
A. K. Dey, Yahui Tian, Y. Gel
{"title":"复杂网络中的社区检测:从统计基础到数据科学应用","authors":"A. K. Dey, Yahui Tian, Y. Gel","doi":"10.1002/wics.1566","DOIUrl":null,"url":null,"abstract":"Identifying and tracking community structures in complex networks are one of the cornerstones of network studies, spanning multiple disciplines, from statistics to machine learning to social sciences, and involving even a broader range of application areas, from biology to politics to blockchain. This survey paper aims to provide an overview of some most popular approaches in statistical network community detection as well as the newly emerging research directions such as community extraction with higher‐order features and community discovery in multilayer and multiscale networks. Our goal is to offer a unified view at methodological interconnections and the wide spectrum of interdisciplinary data science applications of network community analysis.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":"14 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1566","citationCount":"8","resultStr":"{\"title\":\"Community detection in complex networks: From statistical foundations to data science applications\",\"authors\":\"A. K. Dey, Yahui Tian, Y. Gel\",\"doi\":\"10.1002/wics.1566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying and tracking community structures in complex networks are one of the cornerstones of network studies, spanning multiple disciplines, from statistics to machine learning to social sciences, and involving even a broader range of application areas, from biology to politics to blockchain. This survey paper aims to provide an overview of some most popular approaches in statistical network community detection as well as the newly emerging research directions such as community extraction with higher‐order features and community discovery in multilayer and multiscale networks. Our goal is to offer a unified view at methodological interconnections and the wide spectrum of interdisciplinary data science applications of network community analysis.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1566\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1566\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1566","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

摘要

识别和跟踪复杂网络中的社区结构是网络研究的基石之一,它跨越多个学科,从统计学到机器学习再到社会科学,甚至涉及更广泛的应用领域,从生物学到政治学再到b区块链。本文旨在概述统计网络社区检测中一些最流行的方法,以及新兴的研究方向,如基于高阶特征的社区提取和多层和多尺度网络中的社区发现。我们的目标是为网络社区分析的方法论互连和广泛的跨学科数据科学应用提供统一的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Community detection in complex networks: From statistical foundations to data science applications
Identifying and tracking community structures in complex networks are one of the cornerstones of network studies, spanning multiple disciplines, from statistics to machine learning to social sciences, and involving even a broader range of application areas, from biology to politics to blockchain. This survey paper aims to provide an overview of some most popular approaches in statistical network community detection as well as the newly emerging research directions such as community extraction with higher‐order features and community discovery in multilayer and multiscale networks. Our goal is to offer a unified view at methodological interconnections and the wide spectrum of interdisciplinary data science applications of network community analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1