GaInNAs/InP量子阱结构导带和能隙的理论研究

Q4 Materials Science Nanosistemi, Nanomateriali, Nanotehnologii Pub Date : 2022-03-01 DOI:10.15407/nnn.20.01.015
Hassan T. B. ALHammade
{"title":"GaInNAs/InP量子阱结构导带和能隙的理论研究","authors":"Hassan T. B. ALHammade","doi":"10.15407/nnn.20.01.015","DOIUrl":null,"url":null,"abstract":"Changes of temperature and composition play a major role in enhancement of the electronic properties of low-dimensional semiconductor devices. Therefore, the interest of researchers in this field is increased. In this article, we study the effect of both the temperature and the nitrogen ratio on the electronic structure of Ga x In 1  x N y As 1  y /InP quantum well. The band anticrossing model, Varshni model, and Bose–Einstein model are adopted to determine the nitrogen effect on conduction band ( E  and E  ). The band gap of Ga x In 1  x As as ternary alloy, and band offsets (  E c ,  E v ) for the Ga x In 1  x N y As 1  y /InP quantum wells are estimated as functions of nitrogen content and temperature. The splitting of conduction band into two non-parabolic subbands due to adding the nitrogen to GaInAs alloy contributes into increase of the band offset of Ga x In 1  x N y As 1  y /InP quantum well, and thus, into increase of the number of energy states inside the quantum well. The results may be useful for applications in electronic and optical devices.","PeriodicalId":18830,"journal":{"name":"Nanosistemi, Nanomateriali, Nanotehnologii","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Study of the Conduction Band and Energy Gap of GaInNAs/InP Quantum Well Structure\",\"authors\":\"Hassan T. B. ALHammade\",\"doi\":\"10.15407/nnn.20.01.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes of temperature and composition play a major role in enhancement of the electronic properties of low-dimensional semiconductor devices. Therefore, the interest of researchers in this field is increased. In this article, we study the effect of both the temperature and the nitrogen ratio on the electronic structure of Ga x In 1  x N y As 1  y /InP quantum well. The band anticrossing model, Varshni model, and Bose–Einstein model are adopted to determine the nitrogen effect on conduction band ( E  and E  ). The band gap of Ga x In 1  x As as ternary alloy, and band offsets (  E c ,  E v ) for the Ga x In 1  x N y As 1  y /InP quantum wells are estimated as functions of nitrogen content and temperature. The splitting of conduction band into two non-parabolic subbands due to adding the nitrogen to GaInAs alloy contributes into increase of the band offset of Ga x In 1  x N y As 1  y /InP quantum well, and thus, into increase of the number of energy states inside the quantum well. The results may be useful for applications in electronic and optical devices.\",\"PeriodicalId\":18830,\"journal\":{\"name\":\"Nanosistemi, Nanomateriali, Nanotehnologii\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanosistemi, Nanomateriali, Nanotehnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/nnn.20.01.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanosistemi, Nanomateriali, Nanotehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/nnn.20.01.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

温度和成分的变化对提高低维半导体器件的电子性能起着重要的作用。因此,研究人员对这一领域的兴趣增加了。在本文中,我们研究了温度和氮比对Ga x In 1 × x N y As 1 × y /InP量子阱电子结构的影响。采用能带反交叉模型、Varshni模型和玻色-爱因斯坦模型来确定氮对导带(E *和E)的影响。Ga的带隙在1x x作为三元合金,和带偏移量(E c,E v)的Ga x 1x N y 1y / InP量子井估计含氮量和温度的函数。在GaInAs合金中加入氮气使导带分裂为两个非抛物型的子带,增加了Ga x in1 × x N y as1 × y /InP量子阱的能带偏移量,从而增加了量子阱内的能态数。研究结果可用于电子和光学器件的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical Study of the Conduction Band and Energy Gap of GaInNAs/InP Quantum Well Structure
Changes of temperature and composition play a major role in enhancement of the electronic properties of low-dimensional semiconductor devices. Therefore, the interest of researchers in this field is increased. In this article, we study the effect of both the temperature and the nitrogen ratio on the electronic structure of Ga x In 1  x N y As 1  y /InP quantum well. The band anticrossing model, Varshni model, and Bose–Einstein model are adopted to determine the nitrogen effect on conduction band ( E  and E  ). The band gap of Ga x In 1  x As as ternary alloy, and band offsets (  E c ,  E v ) for the Ga x In 1  x N y As 1  y /InP quantum wells are estimated as functions of nitrogen content and temperature. The splitting of conduction band into two non-parabolic subbands due to adding the nitrogen to GaInAs alloy contributes into increase of the band offset of Ga x In 1  x N y As 1  y /InP quantum well, and thus, into increase of the number of energy states inside the quantum well. The results may be useful for applications in electronic and optical devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanosistemi, Nanomateriali, Nanotehnologii
Nanosistemi, Nanomateriali, Nanotehnologii Materials Science-Materials Science (miscellaneous)
CiteScore
0.90
自引率
0.00%
发文量
0
期刊介绍: Collected Scientific Transactions "Nanosistemi, Nanomateriali, Nanotehnologii" was founded in 2003, and it is one of the leading periodical scientific transactions of Ukraine. Editor-in-chief of the Collected Scientific Transactions ‘Nanosistemi, Nanomateriali, Nanotehnologii’ is Corresponding Member of the N.A.S. of Ukraine, Dr. Sci. (Phys.-Math.), Prof. Valentyn A. TATARENKO.
期刊最新文献
Peculiarities of the Process of Photogeneration of Charge Carriers in Amorphous Molecular Semiconductors Methods of Investigation of the Phase-Contact Surface Created by Drops of the Sprayed Liquid Exploring the A.C. Electrical Characteristics of ZrC-Nanoparticles-Doped PVA/PEG Blend CNT-Filled Polypropylene/Plasticized Polyvinyl Alcohol Mixtures: Rheology, Morphology, and Properties of Composite Threads Magnetosensitive Nanocomposite Fe3O4/Al2O3/С Synthesis and Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1