机器学习调整的WRF预测支持黑启动运行中的风能需求

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Weather and Forecasting Pub Date : 2023-09-01 DOI:10.1175/waf-d-23-0023.1
Kyle K. Hugeback, W. Gallus, Hugo N. Villegas Pico
{"title":"机器学习调整的WRF预测支持黑启动运行中的风能需求","authors":"Kyle K. Hugeback, W. Gallus, Hugo N. Villegas Pico","doi":"10.1175/waf-d-23-0023.1","DOIUrl":null,"url":null,"abstract":"\nThe push for increased capacity of renewable sources of electricity has led to the growth of wind-power generation, with a need for accurate forecasts of winds at hub height. Forecasts for these levels were uncommon until recently, and that, combined with the nocturnal collapse of the well-mixed boundary layer and daytime growth of the boundary layer through the levels important for energy generation, has contributed to errors in numerical modeling of wind generation resources. The present study explores several machine learning algorithms to both forecast and correct standard WRF Model forecasts of winds and temperature at hub height within wind turbine plants over several different time periods that are critical for the anticipation of potential blackouts and aiding in black start operations on the power grid. It was found that mean square error for day-2 wind forecasts from the WRF Model can be improved by over 90% with the use of a multioutput neural network, and that 60-min forecasts of WRF error, which can then be used to adjust forecasts, can be made with an LSTM with great accuracy. Nowcasting of temperature and wind speed over a 10-min period using an LSTM produced very low error and especially skillful forecasts of maximum and minimum values over the turbine plant area.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning–Adjusted WRF Forecasts to Support Wind Energy Needs in Black Start Operations\",\"authors\":\"Kyle K. Hugeback, W. Gallus, Hugo N. Villegas Pico\",\"doi\":\"10.1175/waf-d-23-0023.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe push for increased capacity of renewable sources of electricity has led to the growth of wind-power generation, with a need for accurate forecasts of winds at hub height. Forecasts for these levels were uncommon until recently, and that, combined with the nocturnal collapse of the well-mixed boundary layer and daytime growth of the boundary layer through the levels important for energy generation, has contributed to errors in numerical modeling of wind generation resources. The present study explores several machine learning algorithms to both forecast and correct standard WRF Model forecasts of winds and temperature at hub height within wind turbine plants over several different time periods that are critical for the anticipation of potential blackouts and aiding in black start operations on the power grid. It was found that mean square error for day-2 wind forecasts from the WRF Model can be improved by over 90% with the use of a multioutput neural network, and that 60-min forecasts of WRF error, which can then be used to adjust forecasts, can be made with an LSTM with great accuracy. Nowcasting of temperature and wind speed over a 10-min period using an LSTM produced very low error and especially skillful forecasts of maximum and minimum values over the turbine plant area.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-23-0023.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0023.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

推动可再生能源发电能力的提高导致了风力发电的增长,需要对枢纽高度的风力进行准确预测。直到最近,对这些水平的预测还很少见,再加上混合良好的边界层在夜间的坍塌和边界层在白天通过对能源生产很重要的水平的增长,导致了风力发电资源数值建模的错误。本研究探索了几种机器学习算法,以预测和纠正WRF模型在几个不同时间段内对风力发电厂轮毂高度的风和温度的标准预测,这对于预测潜在停电和帮助电网黑启动操作至关重要。研究发现,使用多输出神经网络可以将WRF模型的第二天风预测的均方误差提高90%以上,并且使用LSTM可以非常准确地预测WRF误差的60分钟,然后可以用于调整预测。使用LSTM在10分钟内对温度和风速进行实时预报,产生了非常低的误差,尤其是对涡轮机工厂区域的最大值和最小值的熟练预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning–Adjusted WRF Forecasts to Support Wind Energy Needs in Black Start Operations
The push for increased capacity of renewable sources of electricity has led to the growth of wind-power generation, with a need for accurate forecasts of winds at hub height. Forecasts for these levels were uncommon until recently, and that, combined with the nocturnal collapse of the well-mixed boundary layer and daytime growth of the boundary layer through the levels important for energy generation, has contributed to errors in numerical modeling of wind generation resources. The present study explores several machine learning algorithms to both forecast and correct standard WRF Model forecasts of winds and temperature at hub height within wind turbine plants over several different time periods that are critical for the anticipation of potential blackouts and aiding in black start operations on the power grid. It was found that mean square error for day-2 wind forecasts from the WRF Model can be improved by over 90% with the use of a multioutput neural network, and that 60-min forecasts of WRF error, which can then be used to adjust forecasts, can be made with an LSTM with great accuracy. Nowcasting of temperature and wind speed over a 10-min period using an LSTM produced very low error and especially skillful forecasts of maximum and minimum values over the turbine plant area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weather and Forecasting
Weather and Forecasting 地学-气象与大气科学
CiteScore
5.20
自引率
17.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.
期刊最新文献
The Impact of Analysis Correction-based Additive Inflation on subseasonal tropical prediction in the Navy Earth System Prediction Capability Comparison of Clustering Approaches in a Multi-Model Ensemble for U.S. East Coast Cold Season Extratropical Cyclones Collaborative Exploration of Storm-Scale Probabilistic Guidance for NWS Forecast Operations Verification of the Global Forecast System, North American Mesoscale Forecast System, and High-Resolution Rapid Refresh Model Near-Surface Forecasts by use of the New York State Mesonet The influence of time varying sea-ice concentration on Antarctic and Southern Ocean numerical weather prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1