C. Crossett, L. Dupigny-Giroux, K. Kunkel, A. Betts, A. Bomblies
{"title":"美国东北部多持续时间强降水记录的天气类型:1895–2017","authors":"C. Crossett, L. Dupigny-Giroux, K. Kunkel, A. Betts, A. Bomblies","doi":"10.1175/jamc-d-22-0091.1","DOIUrl":null,"url":null,"abstract":"\nMuch of the previous research on total and heavy precipitation trends across the Northeastern US (hereafter Northeast) used daily precipitation totals over relatively short periods of record, which do not capture the full range of climate variability and change. Less well understood are the characteristics of long-term changes and synoptic patterns in longer-duration heavy precipitation events across the Northeast. A multi-duration (1, 2, 3, 7, 14, and 30 days), multi-return interval (2, 5, 10, and 50 years) precipitation dataset was used to diagnose changes in various types of precipitation events across the Northeast from 1895 to 2017. Increasing trends were found in all duration and return-interval event combinations with the rarest, longest duration events increasing at faster rates than more frequent, shorter duration ones. Daily 850-hPa geopotential height patterns associated with precipitation events were extracted from Rotated Principal Component Analysis and k-means clustering analysis, which allowed for the main synoptic types present, as well as their structure and evolution to be analyzed. The daily synoptic patterns thus identified were found to be similar across all durations and return-intervals and included: coastal low (Nor’easters, tropical cyclones, and predecessor rain events), deep trough, east coast trough, zonal, and high pressure patterns.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synoptic-Typing of Multi-Duration, Heavy Precipitation Records in the Northeastern United States: 1895–2017\",\"authors\":\"C. Crossett, L. Dupigny-Giroux, K. Kunkel, A. Betts, A. Bomblies\",\"doi\":\"10.1175/jamc-d-22-0091.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nMuch of the previous research on total and heavy precipitation trends across the Northeastern US (hereafter Northeast) used daily precipitation totals over relatively short periods of record, which do not capture the full range of climate variability and change. Less well understood are the characteristics of long-term changes and synoptic patterns in longer-duration heavy precipitation events across the Northeast. A multi-duration (1, 2, 3, 7, 14, and 30 days), multi-return interval (2, 5, 10, and 50 years) precipitation dataset was used to diagnose changes in various types of precipitation events across the Northeast from 1895 to 2017. Increasing trends were found in all duration and return-interval event combinations with the rarest, longest duration events increasing at faster rates than more frequent, shorter duration ones. Daily 850-hPa geopotential height patterns associated with precipitation events were extracted from Rotated Principal Component Analysis and k-means clustering analysis, which allowed for the main synoptic types present, as well as their structure and evolution to be analyzed. The daily synoptic patterns thus identified were found to be similar across all durations and return-intervals and included: coastal low (Nor’easters, tropical cyclones, and predecessor rain events), deep trough, east coast trough, zonal, and high pressure patterns.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-22-0091.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-22-0091.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Synoptic-Typing of Multi-Duration, Heavy Precipitation Records in the Northeastern United States: 1895–2017
Much of the previous research on total and heavy precipitation trends across the Northeastern US (hereafter Northeast) used daily precipitation totals over relatively short periods of record, which do not capture the full range of climate variability and change. Less well understood are the characteristics of long-term changes and synoptic patterns in longer-duration heavy precipitation events across the Northeast. A multi-duration (1, 2, 3, 7, 14, and 30 days), multi-return interval (2, 5, 10, and 50 years) precipitation dataset was used to diagnose changes in various types of precipitation events across the Northeast from 1895 to 2017. Increasing trends were found in all duration and return-interval event combinations with the rarest, longest duration events increasing at faster rates than more frequent, shorter duration ones. Daily 850-hPa geopotential height patterns associated with precipitation events were extracted from Rotated Principal Component Analysis and k-means clustering analysis, which allowed for the main synoptic types present, as well as their structure and evolution to be analyzed. The daily synoptic patterns thus identified were found to be similar across all durations and return-intervals and included: coastal low (Nor’easters, tropical cyclones, and predecessor rain events), deep trough, east coast trough, zonal, and high pressure patterns.
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.