{"title":"SPMSM无传感器控制的一种新型非奇异快端滑模速度控制器","authors":"Yuhao Zhu, Yongjin Yu, C. Xiao, Bo Wang","doi":"10.1080/21642583.2020.1848657","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the SPMSM no-speed control system, the traditional SMC speed controlling led to a difference in adjustment speed, a large amount of overshoot and obvious chattering. In order to solve this problem, a new non-singular fast Terminal-SMC speed controller is designed and the continuous function υ(s) is used to replace the traditional symbolic function, which effectively improves the observation accuracy, and reduces the system chattering. The Lyapunov function is designed to prove the system’s stability. The simulation results show that the new NSFT-SMC has faster responded speed, stronger system robustness, and less chattering during stable operation. Comparing with traditional SMC speed control and hyperbolic tangent function SMC speed control, it has better control performance.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":"9 1","pages":"102 - 111"},"PeriodicalIF":3.2000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21642583.2020.1848657","citationCount":"1","resultStr":"{\"title\":\"SPMSM sensorless control of a new non-singular fast terminal sliding mode speed controller\",\"authors\":\"Yuhao Zhu, Yongjin Yu, C. Xiao, Bo Wang\",\"doi\":\"10.1080/21642583.2020.1848657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the SPMSM no-speed control system, the traditional SMC speed controlling led to a difference in adjustment speed, a large amount of overshoot and obvious chattering. In order to solve this problem, a new non-singular fast Terminal-SMC speed controller is designed and the continuous function υ(s) is used to replace the traditional symbolic function, which effectively improves the observation accuracy, and reduces the system chattering. The Lyapunov function is designed to prove the system’s stability. The simulation results show that the new NSFT-SMC has faster responded speed, stronger system robustness, and less chattering during stable operation. Comparing with traditional SMC speed control and hyperbolic tangent function SMC speed control, it has better control performance.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":\"9 1\",\"pages\":\"102 - 111\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21642583.2020.1848657\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2020.1848657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2020.1848657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
SPMSM sensorless control of a new non-singular fast terminal sliding mode speed controller
ABSTRACT In the SPMSM no-speed control system, the traditional SMC speed controlling led to a difference in adjustment speed, a large amount of overshoot and obvious chattering. In order to solve this problem, a new non-singular fast Terminal-SMC speed controller is designed and the continuous function υ(s) is used to replace the traditional symbolic function, which effectively improves the observation accuracy, and reduces the system chattering. The Lyapunov function is designed to prove the system’s stability. The simulation results show that the new NSFT-SMC has faster responded speed, stronger system robustness, and less chattering during stable operation. Comparing with traditional SMC speed control and hyperbolic tangent function SMC speed control, it has better control performance.
期刊介绍:
Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory