L. Liang, Y. Cao, D. Wang, Y. Peng, Yan Zhang, Zhenyu Li
{"title":"精胺通过调节水分和氧化平衡、光合作用和热休克蛋白来缓解匍匐草的热致衰老","authors":"L. Liang, Y. Cao, D. Wang, Y. Peng, Yan Zhang, Zhenyu Li","doi":"10.32615/BP.2021.008","DOIUrl":null,"url":null,"abstract":"Spermine (SPM) is involved in response to abiotic stress in plants, but the potential role of SPM in regulating senescence has not been well documented. Objectives of this study were to examine the effect of changes in endogenous polyamines (PAs) by SPM application on improving heat tolerance of creeping bentgrass (Agrostis stolonifera) and explore the SPM-regulated senescence associated with alterations of water and oxidative balance, photosynthesis, and heat shock proteins under heat stress. The results showed that persistent high temperature caused severe oxidative damage and significant decreases in chlorophyll (Chl) content, photosynthetic efficiency, and leaf water content leading to premature senescence in creeping bentgrass, as reflected by a significant upregulation of transcriptions of senescence-associated genes (AsSAG39, Ash36, and Asl20). The improvement of endogenous spermidine (SPD) and SPM content induced by SPM application could significantly alleviate heat stress damage to creeping bentgrass through maintaining higher Chl content, net photosynthetic rate, photochemical efficiency, and performance index on absorption basis, promoting osmotic adjustment ability and antioxidant enzyme (superoxid dismutase, catalase, peroxidase, and ascorbate peroxidase) activities to enhance the scavenging capacity of reactive oxygen species, and upregulating transcriptions of heat shock protein (HSP) genes (HSP90-5, HSP90.1-b1, HSP82, HSP70, HSP26.7, HSP17.8, and HSP12) helping to maintain normal synthesis and functions of proteins under high temperature stress, thereby delaying heat-induced leaf senescence. These findings reveal an important role of PAs in regulating senescence in perennial plants exposed to a high temperature environment.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spermine alleviates heat-induced senescence in creeping bentgrass by regulating water and oxidative balance, photosynthesis, and heat shock proteins\",\"authors\":\"L. Liang, Y. Cao, D. Wang, Y. Peng, Yan Zhang, Zhenyu Li\",\"doi\":\"10.32615/BP.2021.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spermine (SPM) is involved in response to abiotic stress in plants, but the potential role of SPM in regulating senescence has not been well documented. Objectives of this study were to examine the effect of changes in endogenous polyamines (PAs) by SPM application on improving heat tolerance of creeping bentgrass (Agrostis stolonifera) and explore the SPM-regulated senescence associated with alterations of water and oxidative balance, photosynthesis, and heat shock proteins under heat stress. The results showed that persistent high temperature caused severe oxidative damage and significant decreases in chlorophyll (Chl) content, photosynthetic efficiency, and leaf water content leading to premature senescence in creeping bentgrass, as reflected by a significant upregulation of transcriptions of senescence-associated genes (AsSAG39, Ash36, and Asl20). The improvement of endogenous spermidine (SPD) and SPM content induced by SPM application could significantly alleviate heat stress damage to creeping bentgrass through maintaining higher Chl content, net photosynthetic rate, photochemical efficiency, and performance index on absorption basis, promoting osmotic adjustment ability and antioxidant enzyme (superoxid dismutase, catalase, peroxidase, and ascorbate peroxidase) activities to enhance the scavenging capacity of reactive oxygen species, and upregulating transcriptions of heat shock protein (HSP) genes (HSP90-5, HSP90.1-b1, HSP82, HSP70, HSP26.7, HSP17.8, and HSP12) helping to maintain normal synthesis and functions of proteins under high temperature stress, thereby delaying heat-induced leaf senescence. These findings reveal an important role of PAs in regulating senescence in perennial plants exposed to a high temperature environment.\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/BP.2021.008\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/BP.2021.008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Spermine alleviates heat-induced senescence in creeping bentgrass by regulating water and oxidative balance, photosynthesis, and heat shock proteins
Spermine (SPM) is involved in response to abiotic stress in plants, but the potential role of SPM in regulating senescence has not been well documented. Objectives of this study were to examine the effect of changes in endogenous polyamines (PAs) by SPM application on improving heat tolerance of creeping bentgrass (Agrostis stolonifera) and explore the SPM-regulated senescence associated with alterations of water and oxidative balance, photosynthesis, and heat shock proteins under heat stress. The results showed that persistent high temperature caused severe oxidative damage and significant decreases in chlorophyll (Chl) content, photosynthetic efficiency, and leaf water content leading to premature senescence in creeping bentgrass, as reflected by a significant upregulation of transcriptions of senescence-associated genes (AsSAG39, Ash36, and Asl20). The improvement of endogenous spermidine (SPD) and SPM content induced by SPM application could significantly alleviate heat stress damage to creeping bentgrass through maintaining higher Chl content, net photosynthetic rate, photochemical efficiency, and performance index on absorption basis, promoting osmotic adjustment ability and antioxidant enzyme (superoxid dismutase, catalase, peroxidase, and ascorbate peroxidase) activities to enhance the scavenging capacity of reactive oxygen species, and upregulating transcriptions of heat shock protein (HSP) genes (HSP90-5, HSP90.1-b1, HSP82, HSP70, HSP26.7, HSP17.8, and HSP12) helping to maintain normal synthesis and functions of proteins under high temperature stress, thereby delaying heat-induced leaf senescence. These findings reveal an important role of PAs in regulating senescence in perennial plants exposed to a high temperature environment.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.