土工合成材料加筋颗粒土上组合荷载基脚的承载力

IF 2.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Geosynthetics International Pub Date : 2023-06-19 DOI:10.1680/jgein.22.00385
B. Yaghoobi, H. Fathipour, M. Payan, R. Chenari
{"title":"土工合成材料加筋颗粒土上组合荷载基脚的承载力","authors":"B. Yaghoobi, H. Fathipour, M. Payan, R. Chenari","doi":"10.1680/jgein.22.00385","DOIUrl":null,"url":null,"abstract":"In this study, the ultimate bearing capacity of shallow strip footings resting on a geosynthetic-reinforced soil mass subjected to inclined and eccentric combined loading is rigorously examined through the well-established method of lower bound limit analysis (LA) in conjunction with finite element (FE) and second-order cone programming (SOCP). Lower bound limit analysis formulation is modified to consider the ultimate tensile force of the geosynthetic layer in the soil mass so as to account for both pullout (sliding) and rupture (structural) modes of reinforcement failure. The effects of several parameters, including the embedment depth (u) and the ultimate tensile force (Tu) of the geosynthetic layer along with load inclination angle (α) and load eccentricity (e), on the bearing capacity ratio (BCR) and failure envelopes of the overlying shallow foundation are examined and discussed. The results generally show a marked increase in the ultimate bearing capacity of the surface footing against combined loading with the inclusion of a single geosynthetic layer. Results also reveal that a second intermediate reinforcement might be required to bear a dual performance against both vertical concentric and combined loading so as to more effectively support the footing.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bearing capacity of combined loading footings on geosynthetic-reinforced granular soil\",\"authors\":\"B. Yaghoobi, H. Fathipour, M. Payan, R. Chenari\",\"doi\":\"10.1680/jgein.22.00385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the ultimate bearing capacity of shallow strip footings resting on a geosynthetic-reinforced soil mass subjected to inclined and eccentric combined loading is rigorously examined through the well-established method of lower bound limit analysis (LA) in conjunction with finite element (FE) and second-order cone programming (SOCP). Lower bound limit analysis formulation is modified to consider the ultimate tensile force of the geosynthetic layer in the soil mass so as to account for both pullout (sliding) and rupture (structural) modes of reinforcement failure. The effects of several parameters, including the embedment depth (u) and the ultimate tensile force (Tu) of the geosynthetic layer along with load inclination angle (α) and load eccentricity (e), on the bearing capacity ratio (BCR) and failure envelopes of the overlying shallow foundation are examined and discussed. The results generally show a marked increase in the ultimate bearing capacity of the surface footing against combined loading with the inclusion of a single geosynthetic layer. Results also reveal that a second intermediate reinforcement might be required to bear a dual performance against both vertical concentric and combined loading so as to more effectively support the footing.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.22.00385\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.22.00385","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,通过下限分析(LA)与有限元(FE)和二阶锥规划(SOCP)相结合的成熟方法,严格检查了土工合成材料加筋土体上浅条形基脚在倾斜和偏心组合荷载作用下的极限承载力。对下限分析公式进行了修改,以考虑土体中土工合成层的极限拉力,从而考虑钢筋破坏的拉拔(滑动)和断裂(结构)模式。研究和讨论了土工合成层的埋置深度(u)和极限拉力(Tu)以及荷载倾角(α)和荷载偏心率(e)等几个参数对上覆浅基础承载力比(BCR)和破坏包络线的影响。结果通常表明,在包含单个土工合成材料层的情况下,表面基脚的极限承载力显著增加,以抵抗组合荷载。结果还表明,可能需要第二个中间钢筋来承受垂直同心荷载和组合荷载的双重性能,以便更有效地支撑基脚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bearing capacity of combined loading footings on geosynthetic-reinforced granular soil
In this study, the ultimate bearing capacity of shallow strip footings resting on a geosynthetic-reinforced soil mass subjected to inclined and eccentric combined loading is rigorously examined through the well-established method of lower bound limit analysis (LA) in conjunction with finite element (FE) and second-order cone programming (SOCP). Lower bound limit analysis formulation is modified to consider the ultimate tensile force of the geosynthetic layer in the soil mass so as to account for both pullout (sliding) and rupture (structural) modes of reinforcement failure. The effects of several parameters, including the embedment depth (u) and the ultimate tensile force (Tu) of the geosynthetic layer along with load inclination angle (α) and load eccentricity (e), on the bearing capacity ratio (BCR) and failure envelopes of the overlying shallow foundation are examined and discussed. The results generally show a marked increase in the ultimate bearing capacity of the surface footing against combined loading with the inclusion of a single geosynthetic layer. Results also reveal that a second intermediate reinforcement might be required to bear a dual performance against both vertical concentric and combined loading so as to more effectively support the footing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geosynthetics International
Geosynthetics International ENGINEERING, GEOLOGICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
6.90
自引率
20.00%
发文量
91
审稿时长
>12 weeks
期刊介绍: An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice. Topics covered The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.
期刊最新文献
Na-CMC-amended clay: effect of mixing method on hydraulic conductivity and polymer elution A nonlinear analytical model for consolidated geotextile-encased sand columns Geotextile filters: from idealization to real behaviour (Giroud Lecture 2023) Mechanical characteristics of geogrids produced from recycled polyester Natural weathering effects of nonwoven geotextile exposed to different climate conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1