{"title":"随机系统的刘维尔方程","authors":"M. Jornet","doi":"10.1080/07362994.2021.1980015","DOIUrl":null,"url":null,"abstract":"Abstract Given a random system, a Liouville’s equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville’s equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville’s equations for path-wise stochastic integrals and nonlinear random ordinary differential equations.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"40 1","pages":"1026 - 1047"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Liouville’s equations for random systems\",\"authors\":\"M. Jornet\",\"doi\":\"10.1080/07362994.2021.1980015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a random system, a Liouville’s equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville’s equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville’s equations for path-wise stochastic integrals and nonlinear random ordinary differential equations.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"40 1\",\"pages\":\"1026 - 1047\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2021.1980015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2021.1980015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Abstract Given a random system, a Liouville’s equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville’s equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville’s equations for path-wise stochastic integrals and nonlinear random ordinary differential equations.
期刊介绍:
Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.