{"title":"环境温度和压力下铬化409型不锈钢在碱性氯化物溶液中的应力腐蚀开裂敏感性","authors":"Elliott Asare, Joseph Kish, Yimin Zeng","doi":"10.32964/tj22.8.541","DOIUrl":null,"url":null,"abstract":"Biomass hydrothermal liquefaction (HTL) is operated in a harsh reaction medium that contains hot pressurized water, inorganic acidic or basic catalyst, and inorganic/organic corrosive components released during the conversion. Candidate alloys for this application require suitable resistance to both corrosion and stress corrosion cracking (SCC) to withstand the HTL process conditions (250°C–374°C and 4–22 MPa). Ferritic iron-chromium (Fe-Cr) steels are more prone to corrosion but less susceptible to SCC compared to austenitic iron-chromium-nickel (Fe-Cr-Ni) steels. Chromizing can significantly reduce corrosion of Type 409 stainless steel (Fe-11Cr) in a simulated aqueous HTL solution. \n The objective of this study is to determine the SCC susceptibility of chromized Type 409 stainless steel, relative to the bare (non-chromized) case. The slow strain rate testing (SSRT) technique was used for this purpose. For simplicity of experimentation, SSRT was conducted using simulated HTL water containing 800 ppm potassium chloride (KCl), 1 M potassium carbonate (K2CO3), and 10 wt% acetic acid at ambient temperature and pressure. Complementary potentiodynamic polarization measurements and surface analysis by X-ray photoelectron spectroscopy (XPS) were also made to help interpret the SSRT results. The SSRT results show no significant difference in SCC susceptibility, regardless of the starting surface. Thus, chromizing, while significantly reducing the corrosion of Type 409 stainless steel, does not adversely affect SCC susceptibility, at least under the conditions tested.","PeriodicalId":22255,"journal":{"name":"Tappi Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCC susceptibility of chromized type 409 stainless steel in alkaline chloride solutions at ambient temperature and pressure\",\"authors\":\"Elliott Asare, Joseph Kish, Yimin Zeng\",\"doi\":\"10.32964/tj22.8.541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomass hydrothermal liquefaction (HTL) is operated in a harsh reaction medium that contains hot pressurized water, inorganic acidic or basic catalyst, and inorganic/organic corrosive components released during the conversion. Candidate alloys for this application require suitable resistance to both corrosion and stress corrosion cracking (SCC) to withstand the HTL process conditions (250°C–374°C and 4–22 MPa). Ferritic iron-chromium (Fe-Cr) steels are more prone to corrosion but less susceptible to SCC compared to austenitic iron-chromium-nickel (Fe-Cr-Ni) steels. Chromizing can significantly reduce corrosion of Type 409 stainless steel (Fe-11Cr) in a simulated aqueous HTL solution. \\n The objective of this study is to determine the SCC susceptibility of chromized Type 409 stainless steel, relative to the bare (non-chromized) case. The slow strain rate testing (SSRT) technique was used for this purpose. For simplicity of experimentation, SSRT was conducted using simulated HTL water containing 800 ppm potassium chloride (KCl), 1 M potassium carbonate (K2CO3), and 10 wt% acetic acid at ambient temperature and pressure. Complementary potentiodynamic polarization measurements and surface analysis by X-ray photoelectron spectroscopy (XPS) were also made to help interpret the SSRT results. The SSRT results show no significant difference in SCC susceptibility, regardless of the starting surface. Thus, chromizing, while significantly reducing the corrosion of Type 409 stainless steel, does not adversely affect SCC susceptibility, at least under the conditions tested.\",\"PeriodicalId\":22255,\"journal\":{\"name\":\"Tappi Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tappi Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32964/tj22.8.541\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tappi Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32964/tj22.8.541","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
SCC susceptibility of chromized type 409 stainless steel in alkaline chloride solutions at ambient temperature and pressure
Biomass hydrothermal liquefaction (HTL) is operated in a harsh reaction medium that contains hot pressurized water, inorganic acidic or basic catalyst, and inorganic/organic corrosive components released during the conversion. Candidate alloys for this application require suitable resistance to both corrosion and stress corrosion cracking (SCC) to withstand the HTL process conditions (250°C–374°C and 4–22 MPa). Ferritic iron-chromium (Fe-Cr) steels are more prone to corrosion but less susceptible to SCC compared to austenitic iron-chromium-nickel (Fe-Cr-Ni) steels. Chromizing can significantly reduce corrosion of Type 409 stainless steel (Fe-11Cr) in a simulated aqueous HTL solution.
The objective of this study is to determine the SCC susceptibility of chromized Type 409 stainless steel, relative to the bare (non-chromized) case. The slow strain rate testing (SSRT) technique was used for this purpose. For simplicity of experimentation, SSRT was conducted using simulated HTL water containing 800 ppm potassium chloride (KCl), 1 M potassium carbonate (K2CO3), and 10 wt% acetic acid at ambient temperature and pressure. Complementary potentiodynamic polarization measurements and surface analysis by X-ray photoelectron spectroscopy (XPS) were also made to help interpret the SSRT results. The SSRT results show no significant difference in SCC susceptibility, regardless of the starting surface. Thus, chromizing, while significantly reducing the corrosion of Type 409 stainless steel, does not adversely affect SCC susceptibility, at least under the conditions tested.
期刊介绍:
An internationally recognized technical publication for over 60 years, TAPPI Journal (TJ) publishes the latest and most relevant research on the forest products and related industries. A stringent peer-review process and distinguished editorial board of academic and industry experts set TAPPI Journal apart as a reliable source for impactful basic and applied research and technical reviews.
Available at no charge to TAPPI members, each issue of TAPPI Journal features research in pulp, paper, packaging, tissue, nonwovens, converting, bioenergy, nanotechnology or other innovative cellulosic-based products and technologies. Publishing in TAPPI Journal delivers your research to a global audience of colleagues, peers and employers.