Huan Pan, Zhengyu Liang, Jian Lu, Kai Tu, Ning Xie
{"title":"椒盐噪声下分形图像编码的非局部低秩正则化方法","authors":"Huan Pan, Zhengyu Liang, Jian Lu, Kai Tu, Ning Xie","doi":"10.1142/s0218348x23500767","DOIUrl":null,"url":null,"abstract":"Image denoising has been a fundamental problem in the field of image processing. In this paper, we tackle removing impulse noise by combining the fractal image coding and the nonlocal self-similarity priors to recover image. The model undergoes a two-stage process. In the first phase, the identification and labeling of pixels likely to be corrupted by salt-and-pepper noise are carried out. In the second phase, image denoising is performed by solving a constrained convex optimization problem that involves an objective functional composed of three terms: a data fidelity term to measure the similarity between the underlying and observed images, a regularization term to represent the low-rank property of a matrix formed by nonlocal patches of the underlying image, and a quadratic term to measure the closeness of the underlying image to a fractal image. To solve the resulting problem, a combination of proximity algorithms and the weighted singular value thresholding operator is utilized. The numerical results demonstrate an improvement in the structural similarity (SSIM) index and peak signal-to-noise ratio.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NONLOCAL LOW RANK REGULARIZATION METHOD FOR FRACTAL IMAGE CODING UNDER SALT-AND-PEPPER NOISE\",\"authors\":\"Huan Pan, Zhengyu Liang, Jian Lu, Kai Tu, Ning Xie\",\"doi\":\"10.1142/s0218348x23500767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image denoising has been a fundamental problem in the field of image processing. In this paper, we tackle removing impulse noise by combining the fractal image coding and the nonlocal self-similarity priors to recover image. The model undergoes a two-stage process. In the first phase, the identification and labeling of pixels likely to be corrupted by salt-and-pepper noise are carried out. In the second phase, image denoising is performed by solving a constrained convex optimization problem that involves an objective functional composed of three terms: a data fidelity term to measure the similarity between the underlying and observed images, a regularization term to represent the low-rank property of a matrix formed by nonlocal patches of the underlying image, and a quadratic term to measure the closeness of the underlying image to a fractal image. To solve the resulting problem, a combination of proximity algorithms and the weighted singular value thresholding operator is utilized. The numerical results demonstrate an improvement in the structural similarity (SSIM) index and peak signal-to-noise ratio.\",\"PeriodicalId\":55144,\"journal\":{\"name\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23500767\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218348x23500767","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
NONLOCAL LOW RANK REGULARIZATION METHOD FOR FRACTAL IMAGE CODING UNDER SALT-AND-PEPPER NOISE
Image denoising has been a fundamental problem in the field of image processing. In this paper, we tackle removing impulse noise by combining the fractal image coding and the nonlocal self-similarity priors to recover image. The model undergoes a two-stage process. In the first phase, the identification and labeling of pixels likely to be corrupted by salt-and-pepper noise are carried out. In the second phase, image denoising is performed by solving a constrained convex optimization problem that involves an objective functional composed of three terms: a data fidelity term to measure the similarity between the underlying and observed images, a regularization term to represent the low-rank property of a matrix formed by nonlocal patches of the underlying image, and a quadratic term to measure the closeness of the underlying image to a fractal image. To solve the resulting problem, a combination of proximity algorithms and the weighted singular value thresholding operator is utilized. The numerical results demonstrate an improvement in the structural similarity (SSIM) index and peak signal-to-noise ratio.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.