{"title":"石油胁迫下玉米表面活性剂、胞外多糖和生物膜细菌的筛选及其对玉米生长的影响","authors":"S. Habib","doi":"10.17957/ijab/15.1839","DOIUrl":null,"url":null,"abstract":"Environmental stress imposed by petroleum hydrocarbons can compensate by use of auxin-producing bacteria having potential for biosurfactants production, to assist improved plants’ growth in petrol contaminated areas. In the present work, four auxin-producing bacteria were screened for biosurfactants, exopolysaccharides (EPS) and biofilms production capability. We hypothesized that Enterobacter sp. (A5C) was the most efficient strain with respect to biosurfactant production and can accumulate EPS as well as biofilms. This strain was attributed to exhibit emulsification index, percentage of hydrophobicity and percentage of hydrocarbon degradation more than 50%. Also, it produced 9.27 mg of EPS per 100 mL of culture while Fourier transform infrared spectroscopy (FTIR) confirmed the presence of alcoholic and carboxylic groups, ketone and sugars in it. Results of in vitro plant microbe interaction assay revealed its potential to stimulate the growth of Zea mays L. plants under 1 and 2% of petrol stress by improving physio-chemical attributes of treated plants, over control. Thus, it is concluded that the test organism i.e., Enterobacter sp. (A5C) might be involved in developing bacterial community (EPS and biofilms) that helped to colonize the bacteria to the plant roots and soil particles that ultimately encouraged the more access to nutrients and protection of plant roots from toxins in soil ecosystem. © 2021 Friends Science Publishers","PeriodicalId":13769,"journal":{"name":"International Journal of Agriculture and Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Screening of Bacteria for Biosurfactants, Exopolysaccharides and Biofilms and their Impact on Growth Stimulation of Zea mays Grown under Petrol Stress\",\"authors\":\"S. Habib\",\"doi\":\"10.17957/ijab/15.1839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental stress imposed by petroleum hydrocarbons can compensate by use of auxin-producing bacteria having potential for biosurfactants production, to assist improved plants’ growth in petrol contaminated areas. In the present work, four auxin-producing bacteria were screened for biosurfactants, exopolysaccharides (EPS) and biofilms production capability. We hypothesized that Enterobacter sp. (A5C) was the most efficient strain with respect to biosurfactant production and can accumulate EPS as well as biofilms. This strain was attributed to exhibit emulsification index, percentage of hydrophobicity and percentage of hydrocarbon degradation more than 50%. Also, it produced 9.27 mg of EPS per 100 mL of culture while Fourier transform infrared spectroscopy (FTIR) confirmed the presence of alcoholic and carboxylic groups, ketone and sugars in it. Results of in vitro plant microbe interaction assay revealed its potential to stimulate the growth of Zea mays L. plants under 1 and 2% of petrol stress by improving physio-chemical attributes of treated plants, over control. Thus, it is concluded that the test organism i.e., Enterobacter sp. (A5C) might be involved in developing bacterial community (EPS and biofilms) that helped to colonize the bacteria to the plant roots and soil particles that ultimately encouraged the more access to nutrients and protection of plant roots from toxins in soil ecosystem. © 2021 Friends Science Publishers\",\"PeriodicalId\":13769,\"journal\":{\"name\":\"International Journal of Agriculture and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agriculture and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17957/ijab/15.1839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agriculture and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17957/ijab/15.1839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
Screening of Bacteria for Biosurfactants, Exopolysaccharides and Biofilms and their Impact on Growth Stimulation of Zea mays Grown under Petrol Stress
Environmental stress imposed by petroleum hydrocarbons can compensate by use of auxin-producing bacteria having potential for biosurfactants production, to assist improved plants’ growth in petrol contaminated areas. In the present work, four auxin-producing bacteria were screened for biosurfactants, exopolysaccharides (EPS) and biofilms production capability. We hypothesized that Enterobacter sp. (A5C) was the most efficient strain with respect to biosurfactant production and can accumulate EPS as well as biofilms. This strain was attributed to exhibit emulsification index, percentage of hydrophobicity and percentage of hydrocarbon degradation more than 50%. Also, it produced 9.27 mg of EPS per 100 mL of culture while Fourier transform infrared spectroscopy (FTIR) confirmed the presence of alcoholic and carboxylic groups, ketone and sugars in it. Results of in vitro plant microbe interaction assay revealed its potential to stimulate the growth of Zea mays L. plants under 1 and 2% of petrol stress by improving physio-chemical attributes of treated plants, over control. Thus, it is concluded that the test organism i.e., Enterobacter sp. (A5C) might be involved in developing bacterial community (EPS and biofilms) that helped to colonize the bacteria to the plant roots and soil particles that ultimately encouraged the more access to nutrients and protection of plant roots from toxins in soil ecosystem. © 2021 Friends Science Publishers