关于“昆士兰东南部大洪水”的讨论:假设它们是随机发生的是否有效?由通用汽车麦克马洪(GM McMahon)和AS Kiem撰写

IF 2.4 Q2 WATER RESOURCES Australasian Journal of Water Resources Pub Date : 2019-07-03 DOI:10.1080/13241583.2019.1669970
R. French, M. Jones
{"title":"关于“昆士兰东南部大洪水”的讨论:假设它们是随机发生的是否有效?由通用汽车麦克马洪(GM McMahon)和AS Kiem撰写","authors":"R. French, M. Jones","doi":"10.1080/13241583.2019.1669970","DOIUrl":null,"url":null,"abstract":"No doubt the authors’ paper was received with many mutterings of ‘You have to be out of your cottonpickin’ minds, Piglets. I’ve been doing flood frequency analyses since I was in three-cornered pants and the idea that floods come in cycles has to be total bovine excrement!’ It is understandable that longterm compliance with Australian Rainfall and Runoff (Pattison 1977; Pilgrim 1987; Ball et al. 2016) could result in practitioners truly believing that annual floods are perfectly random entities and that they always occur according to the Log-Pearson Type III (LP3) distribution. That statistical distribution, first devised in 1888 by Pearson to describe skewed data, has come to us through five U.S. studies from 1966 to 1982, after which Stedinger and Griffis (2008) commented: ‘Bobée and Ashkar (1991, 76) observe that since the official adoption of the LP3 distribution in the United States and Australia, “its application to the study of floods has been both extensive and widespread.” Still a concern is whether the adopted LP3 distribution with log-space moments is a good choice . . . the true distribution will never be known.’ Bypassing that philosophical profundity in favour of practicality, Australian Rainfall and Runoff (Ball et al. 2016) continues to follow U.S. practice in its Book 3 Chapter 2 and encapsulates it in TUFLOWFlike flood frequency software. Since then, the U.S. has produced Bulletin 17C (England et al. 2018) to strengthen a number of identified areas of weakness and has resulted in USGS PeakFQ version 7.1 and USACE HEC-SSP 2.1 software. But with all its tweaking, the LP3 distribution is not omnipotent. Under the sub-heading Decadal Trends in Annual Peak Streamflow, Mastin et al. (2016, 12) declare: ‘In the Pacific Northwest region, decadal shifts in precipitation are linked to atmospheric circulation and sea surface temperatures (Cayan et al. 1998). As result, decadal trends in annual peak flows are evident at many sites’ as shown by their Figure 7. It appears that the semicyclicity of flooding is the new reality for flood hydrologists. An examination of LP3-advocating Bulletin 17C flood records at 01134500 Moose River at Victory VT suggests the biggest floods may occur on a 20-year semi-cycle on the U.S. East Coast (England et al. 2018, Table 10.3). And it is not that Australians are ignorant of the lumpiness of flooding. Australian Rainfall and Runoff (Ball et al. 2016) Book 3 Chapter 2.2.1 states: ‘Climate may experience pseudo-periodic shifts that persist over periods lasting from several years to several decades. There is growing evidence that parts of Australia are subject to such forcing and that this significantly affects flood risk . . . practitioners are therefore advised to keep abreast of new developments.’ Questions for the authors are:","PeriodicalId":51870,"journal":{"name":"Australasian Journal of Water Resources","volume":"23 1","pages":"148 - 149"},"PeriodicalIF":2.4000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13241583.2019.1669970","citationCount":"1","resultStr":"{\"title\":\"Discussion on 'Large floods in South East Queensland: is it valid to assume they occur randomly?' by GM McMahon and AS Kiem\",\"authors\":\"R. French, M. Jones\",\"doi\":\"10.1080/13241583.2019.1669970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"No doubt the authors’ paper was received with many mutterings of ‘You have to be out of your cottonpickin’ minds, Piglets. I’ve been doing flood frequency analyses since I was in three-cornered pants and the idea that floods come in cycles has to be total bovine excrement!’ It is understandable that longterm compliance with Australian Rainfall and Runoff (Pattison 1977; Pilgrim 1987; Ball et al. 2016) could result in practitioners truly believing that annual floods are perfectly random entities and that they always occur according to the Log-Pearson Type III (LP3) distribution. That statistical distribution, first devised in 1888 by Pearson to describe skewed data, has come to us through five U.S. studies from 1966 to 1982, after which Stedinger and Griffis (2008) commented: ‘Bobée and Ashkar (1991, 76) observe that since the official adoption of the LP3 distribution in the United States and Australia, “its application to the study of floods has been both extensive and widespread.” Still a concern is whether the adopted LP3 distribution with log-space moments is a good choice . . . the true distribution will never be known.’ Bypassing that philosophical profundity in favour of practicality, Australian Rainfall and Runoff (Ball et al. 2016) continues to follow U.S. practice in its Book 3 Chapter 2 and encapsulates it in TUFLOWFlike flood frequency software. Since then, the U.S. has produced Bulletin 17C (England et al. 2018) to strengthen a number of identified areas of weakness and has resulted in USGS PeakFQ version 7.1 and USACE HEC-SSP 2.1 software. But with all its tweaking, the LP3 distribution is not omnipotent. Under the sub-heading Decadal Trends in Annual Peak Streamflow, Mastin et al. (2016, 12) declare: ‘In the Pacific Northwest region, decadal shifts in precipitation are linked to atmospheric circulation and sea surface temperatures (Cayan et al. 1998). As result, decadal trends in annual peak flows are evident at many sites’ as shown by their Figure 7. It appears that the semicyclicity of flooding is the new reality for flood hydrologists. An examination of LP3-advocating Bulletin 17C flood records at 01134500 Moose River at Victory VT suggests the biggest floods may occur on a 20-year semi-cycle on the U.S. East Coast (England et al. 2018, Table 10.3). And it is not that Australians are ignorant of the lumpiness of flooding. Australian Rainfall and Runoff (Ball et al. 2016) Book 3 Chapter 2.2.1 states: ‘Climate may experience pseudo-periodic shifts that persist over periods lasting from several years to several decades. There is growing evidence that parts of Australia are subject to such forcing and that this significantly affects flood risk . . . practitioners are therefore advised to keep abreast of new developments.’ Questions for the authors are:\",\"PeriodicalId\":51870,\"journal\":{\"name\":\"Australasian Journal of Water Resources\",\"volume\":\"23 1\",\"pages\":\"148 - 149\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13241583.2019.1669970\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Journal of Water Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13241583.2019.1669970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Journal of Water Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13241583.2019.1669970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

毫无疑问,作者的论文收到时有很多人在喃喃自语:“小猪,你一定是疯了。”。从我穿着三角裤开始,我就一直在做洪水频率分析,洪水是周期性的,这一定是牛粪!”可以理解的是,长期遵守澳大利亚降雨和径流(Pattison 1977;Pilgrim 1987;Ball等人2016)可能会让从业者真正相信,年度洪水是完全随机的,并且它们总是根据Log-Pearson III型(LP3)分布发生。皮尔逊于1888年首次设计了这种统计分布来描述偏斜的数据,从1966年到1982年,通过五项美国研究,Stedinger和Griffis(2008)评论道:“Bobée和Ashkar(199176)观察到,自美国和澳大利亚正式采用LP3分布以来,“它在洪水研究中的应用既广泛又广泛。”仍然令人担忧的是,采用具有对数空间矩的LP3分布是否是一个好的选择。真实的分布永远不会为人所知澳大利亚降雨和径流(Ball等人,2016)在其第3卷第2章中继续遵循美国的做法,并将其封装在TUFLOWFlike洪水频率软件中。此后,美国发布了公告17C(England等人,2018),以加强一些已确定的薄弱环节,并推出了USGS PeakFQ 7.1版和USACE HEC-SSP 2.1软件。但经过种种调整,LP3的分布并非无所不能。Mastin等人(2016,12)在年度峰值流量的十年趋势下宣布:“在太平洋西北地区,降水量的十年变化与大气环流和海面温度有关(Cayan等人,1998)。因此,如图7所示,在许多地点,年峰值流量的十年趋势是明显的。洪水的半周期性似乎是洪水水文学家面临的新现实。对胜利VT穆斯河01134500处LP3倡导公告17C洪水记录的研究表明,最大的洪水可能发生在美国东海岸20年半周期内(England等人,2018,表10.3)。澳大利亚人并不是不知道洪水的严重性。澳大利亚降雨和径流(Ball等人,2016)第3卷第2.2.1章指出:“气候可能会经历持续数年至数十年的伪周期性变化。越来越多的证据表明,澳大利亚部分地区受到这种强迫,这严重影响了洪水风险。因此,建议从业人员及时了解新的发展作者的问题是:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discussion on 'Large floods in South East Queensland: is it valid to assume they occur randomly?' by GM McMahon and AS Kiem
No doubt the authors’ paper was received with many mutterings of ‘You have to be out of your cottonpickin’ minds, Piglets. I’ve been doing flood frequency analyses since I was in three-cornered pants and the idea that floods come in cycles has to be total bovine excrement!’ It is understandable that longterm compliance with Australian Rainfall and Runoff (Pattison 1977; Pilgrim 1987; Ball et al. 2016) could result in practitioners truly believing that annual floods are perfectly random entities and that they always occur according to the Log-Pearson Type III (LP3) distribution. That statistical distribution, first devised in 1888 by Pearson to describe skewed data, has come to us through five U.S. studies from 1966 to 1982, after which Stedinger and Griffis (2008) commented: ‘Bobée and Ashkar (1991, 76) observe that since the official adoption of the LP3 distribution in the United States and Australia, “its application to the study of floods has been both extensive and widespread.” Still a concern is whether the adopted LP3 distribution with log-space moments is a good choice . . . the true distribution will never be known.’ Bypassing that philosophical profundity in favour of practicality, Australian Rainfall and Runoff (Ball et al. 2016) continues to follow U.S. practice in its Book 3 Chapter 2 and encapsulates it in TUFLOWFlike flood frequency software. Since then, the U.S. has produced Bulletin 17C (England et al. 2018) to strengthen a number of identified areas of weakness and has resulted in USGS PeakFQ version 7.1 and USACE HEC-SSP 2.1 software. But with all its tweaking, the LP3 distribution is not omnipotent. Under the sub-heading Decadal Trends in Annual Peak Streamflow, Mastin et al. (2016, 12) declare: ‘In the Pacific Northwest region, decadal shifts in precipitation are linked to atmospheric circulation and sea surface temperatures (Cayan et al. 1998). As result, decadal trends in annual peak flows are evident at many sites’ as shown by their Figure 7. It appears that the semicyclicity of flooding is the new reality for flood hydrologists. An examination of LP3-advocating Bulletin 17C flood records at 01134500 Moose River at Victory VT suggests the biggest floods may occur on a 20-year semi-cycle on the U.S. East Coast (England et al. 2018, Table 10.3). And it is not that Australians are ignorant of the lumpiness of flooding. Australian Rainfall and Runoff (Ball et al. 2016) Book 3 Chapter 2.2.1 states: ‘Climate may experience pseudo-periodic shifts that persist over periods lasting from several years to several decades. There is growing evidence that parts of Australia are subject to such forcing and that this significantly affects flood risk . . . practitioners are therefore advised to keep abreast of new developments.’ Questions for the authors are:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
21.90%
发文量
25
期刊介绍: The Australasian Journal of Water Resources ( AJWR) is a multi-disciplinary regional journal dedicated to scholarship, professional practice and discussion on water resources planning, management and policy. Its primary geographic focus is on Australia, New Zealand and the Pacific Islands. Papers from outside this region will also be welcomed if they contribute to an understanding of water resources issues in the region. Such contributions could be due to innovations applicable to the Australasian water community, or where clear linkages between studies in other parts of the world are linked to important issues or water planning, management, development and policy challenges in Australasia. These could include papers on global issues where Australasian impacts are clearly identified.
期刊最新文献
Artificial Intelligence of Things (AIoT)-oriented framework for blockage assessment at cross-drainage hydraulic structures Comment on sustainable salinity management in ‘the three-infrastructures framework and water risks in the Murray-Darling Basin, Australia’ by Williams et al. (2022) Wivenhoe, January 2011: the dam truth How well is the basin plan meeting its objectives? From the perspective of the Coorong, a sentinel of change in the Murray-Darling Basin The SWTools R package for SILO data acquisition, homogeneity testing and correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1