基于双分支迭代的深度增量图像分类方法

何丽, 韩克平, 朱泓西, 刘颖
{"title":"基于双分支迭代的深度增量图像分类方法","authors":"何丽, 韩克平, 朱泓西, 刘颖","doi":"10.16451/J.CNKI.ISSN1003-6059.202002007","DOIUrl":null,"url":null,"abstract":"To solve the catastrophic forgetting problem caused by incremental learning,a deep incremental image classification method based on double-branch iteration is proposed.The primary network is utilized to store the acquired old class knowledge,while the branch network is exploited to learn the new class knowledge.The parameters of the branch network are optimized by the weight of the primary network in the incremental iteration process.Density peak clustering method is employed to select typical samples from the iterative dataset and construct retention set.The retention set is added into the incremental iteration training to mitigate catastrophic forgetting.The experiments demonstrate the better performance of the proposed method.","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Incremental Image Classification Method Based on Double-Branch Iteration\",\"authors\":\"何丽, 韩克平, 朱泓西, 刘颖\",\"doi\":\"10.16451/J.CNKI.ISSN1003-6059.202002007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the catastrophic forgetting problem caused by incremental learning,a deep incremental image classification method based on double-branch iteration is proposed.The primary network is utilized to store the acquired old class knowledge,while the branch network is exploited to learn the new class knowledge.The parameters of the branch network are optimized by the weight of the primary network in the incremental iteration process.Density peak clustering method is employed to select typical samples from the iterative dataset and construct retention set.The retention set is added into the incremental iteration training to mitigate catastrophic forgetting.The experiments demonstrate the better performance of the proposed method.\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202002007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202002007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

为了解决增量学习导致的灾难性遗忘问题,提出了一种基于双分支迭代的深度增量图像分类方法。利用主网络存储已获取的旧类知识,利用分支网络学习新的类知识。在增量迭代过程中,利用主网络的权重对分支网络的参数进行优化。采用密度峰聚类方法从迭代数据集中选取典型样本,构建保留集。将保留集添加到增量迭代训练中,以减轻灾难性遗忘。实验结果表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Incremental Image Classification Method Based on Double-Branch Iteration
To solve the catastrophic forgetting problem caused by incremental learning,a deep incremental image classification method based on double-branch iteration is proposed.The primary network is utilized to store the acquired old class knowledge,while the branch network is exploited to learn the new class knowledge.The parameters of the branch network are optimized by the weight of the primary network in the incremental iteration process.Density peak clustering method is employed to select typical samples from the iterative dataset and construct retention set.The retention set is added into the incremental iteration training to mitigate catastrophic forgetting.The experiments demonstrate the better performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
期刊最新文献
Pattern Recognition and Artificial Intelligence: 5th Mediterranean Conference, MedPRAI 2021, Istanbul, Turkey, December 17–18, 2021, Proceedings Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part I Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part II Conditional Graph Pattern Matching with a Basic Static Analysis Ensemble Classification Using Entropy-Based Features for MRI Tissue Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1