{"title":"脉冲锁相热成像技术测量涂层层厚的新方法","authors":"D. Hoffmann, M. Bastian, G. Schober","doi":"10.1080/17686733.2020.1816752","DOIUrl":null,"url":null,"abstract":"ABSTRACT The coating of materials has grown to an important treatment for improving functionality and appearance of components. A decisive factor for a reliable and consistent performance in its field of application is the layer thickness of coated materials. Consequently, monitoring and controlling the thickness, especially the homogeneity of the coating, represent relevant tasks on a large scope. Active thermography has been established as a method for quality monitoring, but excitation sources for conventional lock-in thermography are either very expensive or relatively inert. Commonly used excitation sources for pulse thermography have a high responsiveness, but a lower signal-to-noise-ratio (SNR) usually confines the result. In this paper, a novel approach is presented where the sample is periodically excited with consecutive pulses and submitted to a lock-in evaluation. This so-called pulsed lock-in thermography offers a less expensive and reproducible way for non-destructive testing and has the potential for large-area measurement of the thickness of coatings.","PeriodicalId":54525,"journal":{"name":"Quantitative Infrared Thermography Journal","volume":"19 1","pages":"71 - 84"},"PeriodicalIF":3.7000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17686733.2020.1816752","citationCount":"6","resultStr":"{\"title\":\"New approach for layer thickness measurements of coatings using pulsed lock-in thermography\",\"authors\":\"D. Hoffmann, M. Bastian, G. Schober\",\"doi\":\"10.1080/17686733.2020.1816752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The coating of materials has grown to an important treatment for improving functionality and appearance of components. A decisive factor for a reliable and consistent performance in its field of application is the layer thickness of coated materials. Consequently, monitoring and controlling the thickness, especially the homogeneity of the coating, represent relevant tasks on a large scope. Active thermography has been established as a method for quality monitoring, but excitation sources for conventional lock-in thermography are either very expensive or relatively inert. Commonly used excitation sources for pulse thermography have a high responsiveness, but a lower signal-to-noise-ratio (SNR) usually confines the result. In this paper, a novel approach is presented where the sample is periodically excited with consecutive pulses and submitted to a lock-in evaluation. This so-called pulsed lock-in thermography offers a less expensive and reproducible way for non-destructive testing and has the potential for large-area measurement of the thickness of coatings.\",\"PeriodicalId\":54525,\"journal\":{\"name\":\"Quantitative Infrared Thermography Journal\",\"volume\":\"19 1\",\"pages\":\"71 - 84\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17686733.2020.1816752\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Infrared Thermography Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17686733.2020.1816752\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Infrared Thermography Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17686733.2020.1816752","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
New approach for layer thickness measurements of coatings using pulsed lock-in thermography
ABSTRACT The coating of materials has grown to an important treatment for improving functionality and appearance of components. A decisive factor for a reliable and consistent performance in its field of application is the layer thickness of coated materials. Consequently, monitoring and controlling the thickness, especially the homogeneity of the coating, represent relevant tasks on a large scope. Active thermography has been established as a method for quality monitoring, but excitation sources for conventional lock-in thermography are either very expensive or relatively inert. Commonly used excitation sources for pulse thermography have a high responsiveness, but a lower signal-to-noise-ratio (SNR) usually confines the result. In this paper, a novel approach is presented where the sample is periodically excited with consecutive pulses and submitted to a lock-in evaluation. This so-called pulsed lock-in thermography offers a less expensive and reproducible way for non-destructive testing and has the potential for large-area measurement of the thickness of coatings.
期刊介绍:
The Quantitative InfraRed Thermography Journal (QIRT) provides a forum for industry and academia to discuss the latest developments of instrumentation, theoretical and experimental practices, data reduction, and image processing related to infrared thermography.